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Preface

This thesis is the result of four years of hard work. To complement the 6 chapters
that present my research in a traditional academic format, I also wanted to
“humanise” my thesis in a less conventional way. First, Chapters 4 to 8 conclude
with anecdotes and photographs that give a glimpse of what happened while 1
was working on them. Second, the background section in Chapter 2 is written in
a non-academic style, hopefully making it easier for people outside my research
niche to understand the overall research story.

For the Einsteins among you, my brain friend will chime in with more
technical details from time to time. (Credits to flaticon.com.)

Humanising This Thesis With Glimpses Behind the Scenes

Chapter 2 will explain that AT is often a black box, producing outcomes in
an unclear way. In a sense, PhD trajectories are similar: there is typically
little context about how PhD researchers spend years working on their thesis.
Opening the “PhD black box” does more justice to at least three parties involved:

1. A PhD is extremely demanding for PhD researchers and their supporters.
Yet, academic texts do not reflect the painstaking hours, sacrifices,
adventures, and joyful moments needed to produce them. Theses remain
scientific texts, but they shouldn’t look as if produced by machines.

2. Sharing experiences and life stories can help fellow researchers better
process and battle against challenges that put their private lives and
mental health under pressure. PhD trajectories generate knowledge beyond
research outcomes.

3. Countless times, I have had to explain people outside academia what a
PhD entails, facing many misconceptions such as “studying for free and


https://www.flaticon.com/free-icon/mental-health_3576226
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”

getting long holidays.” Academics should better communicate what a
PhD encompasses, acknowledging both the tough and enriching parts.

To show a bit of what happened during my PhD, I complemented each chapter
with four anecdotes and photographs I took. Furthermore, I acknowledged the
many people who supported me throughout.

Humanising This Thesis With A More Accessible Text

Academics sometimes joke that “apart from the examination committee, nobody
really reads theses.” While this might consolidate PhD researchers who stress
about their thesis, it should lead to more reflection: why do people seldom
read theses? One of the reasons is that academic writing styles, jargon, and
unengaging formats often obscure the fascinating content. More accessible
theses can benefit both fellow researchers and non-researchers:

1. Researchers are often very specialised, so, in the bigger picture, they are
rather unfamiliar with each other’s topics. Yet, many researchers want to
learn from other fields, which isn’t easy when dense papers are scattered
over different journals, conference proceedings, and books. Accessible
theses are ideal to quickly get a taste of new research areas. This fosters
interdisciplinary collaboration and benefits science as a whole.

2. Non-researchers have different opinions about inaccessible scientific texts,
ranging from “They are Greek to me, so researchers must be really smart”
to “Typical for researchers in their ivory tower.” Often, there is little
engagement with the research itself. This is a failure: the purpose of theses
isn’t to stroke researchers’ egos or reinforce misconceptions of academia,
but to share knowledge, spark enthusiasm, and generate discussions. Non-
researchers can also be part of this discourse.

To make my thesis more accessible, I wrote the background section in a more
fluent style than typical academic writing, included illuminating illustrations,
and restricted jargon. This doesn’t necessarily make my thesis some light
reading, but I hope it lets you understand the overall story and sparks your
interest in my research area (and maybe even research overall).

My attempts to add a human touch to my thesis are just an example of how
to address the issues I raised. Nevertheless, I hope they inspire you to push
further, whether you are a researcher or not. Quickly start reading the next
chapter now. Once you get to know my research topic better, you might find
my call to “humanise” theses and “open black boxes” quite ironic.



Abstract

The rise of “big data” and artificial intelligence (AI) in countless application
domains comes with tremendous opportunities, but also entails challenges
concerning transparency and controllability. Well-performing Al models are
often “black boxes,” which means that understanding how they establish
outcomes is hard or even infeasible. Researchers in ezplainable AI (XAI)
therefore develop algorithm-centred and human-centred methods that try to
give people insights into the reasoning process of AI models. In turn, the
expectation is this allows people to better understand and trust AI models,
and thus make better-informed decisions. However, the body of experimental
human-centred research that backs up these expectations is limited. In addition,
it is unclear whether XAl techniques meet the insights required by different
user groups across application domains and contexts in the first place. Thus,
XAI studies with actual people and real-world data are urgent.

Our work focuses on designing, implementing, and evaluating visualisation-
supported explanations for Al systems in healthcare, agrifood, and education.
Following human-centred research practices, we study three research questions:
(1) How can visual explanations tailored to a target audience and application
domain make AI models more transparent?; (2) How can people control Al
models with additional feedback, supported by interactive visual explanations?;
and (3) How do visual explanations and control affect people’s perceptions of Al
systems, e.g., in terms of appropriate trust and understanding their outcomes?

Overall, we show how explainability can be established through visual analytics,
visualisation-supported justification, and visualisation-supported control. We do
this by reviewing the existing literature, developing new visual explanations and
control mechanisms in close collaboration with real end-users of Al systems, and
conducting user studies to better understand how our explainability methods
affect people’s perceptions of Al systems. Our work demonstrates the value of
human-centred and interdisciplinary research to design XAI solutions that align
with people’s needs and truly augment human capabilities with Al






Beknopte samenvatting

De opkomst van “big data” en artificiéle intelligentie (AI) in talloze
toepassingsdomeinen brengt enorme kansen met zich mee, maar leidt ook
tot uitdagingen omtrent transparantie en controleerbaarheid. Goed presterende
Al-modellen zijn vaak “zwarte dozen”, wat betekent dat het moeilijk of zelfs
onmogelijk is om te begrijpen hoe ze tot resultaten komen. Onderzoekers
binnen verklaarbare AI (in het Engels: explainable AI, ofwel XAT) ontwikkelen
daarom algoritme- en mensgerichte methodes die mensen inzicht proberen
geven in het redeneerproces van Al-modellen. De verwachting is dat mensen
Al-modellen daardoor beter kunnen begrijpen en vertrouwen, en dus beter
geinformeerde beslissingen kunnen nemen. Het experimentele mensgerichte
onderzoek dat die verwachtingen ondersteunt, is echter beperkt. Bovendien is het
onduidelijk of XAlI-technieken iiberhaupt de inzichten bieden die verschillende
gebruikersgroepen in verschillende toepassingsdomeinen en contexten nodig
hebben. Er is dus dringend nood aan XAl-onderzoek met echte mensen en
gegevens uit de echte wereld.

Ons werk focust op het ontwerpen, implementeren en evalueren van visualisatie-
ondersteunde verklaringen voor Al-systemen in de gezondheidszorg, de agro-
industrie en het onderwijs. We bestuderen drie onderzoeksvragen op basis van
mensgerichte onderzoekspraktijken: (1) Hoe kunnen Al-modellen transparanter
worden gemaakt door visuele verklaringen die zijn afgestemd op de doelgroep en
het toepassingsdomein? (2) Hoe kunnen mensen Al-modellen controleren met
aanvullende feedback, ondersteund door interactieve visuele verklaringen? en
(3) Hoe beinvloeden visuele verklaringen en controle mensen in hun perceptie
van Al-systemen, bijvoorbeeld in termen van gepast vertrouwen en begrip van
de output?

Samengevat: we laten zien hoe verklaarbaarheid van Al tot stand kan komen
via visuele analyse, visualisatie-ondersteunde rechtvaardiging en visualisatie-
ondersteunde controle. We doen dit door de bestaande literatuur te bestuderen,
nieuwe visuele verklaringen en controlemechanismes te ontwikkelen in nauwe
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samenwerking met echte eindgebruikers van Al-systemen, en gebruikersstudies
uit te voeren om beter te begrijpen hoe onze verklaringsmethodes de perceptie
van mensen over Al-systemen beinvloeden. Ons werk demonstreert de waarde
van mensgericht en interdisciplinair onderzoek om X Al-oplossingen te ontwerpen
die aansluiten bij de behoeften van mensen en die menselijke capaciteiten
daadwerkelijk versterken met Al.
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Chapter 1

Introduction

We all know it: we live in the era of “big data” and artificial intelligence (AI). The
rise of Al is visible in countless application domains. For example, healthcare
applies Al to predict the onset of diseases, analyse medical imaging, or help
rehabilitate patients with acute and chronic conditions; agrifood uses Al to
precisely monitor crop growth, optimise irrigation, or support smart farming; and
education adopts Al to recommend learning materials, create new educational
content, or automatically assess learners’ mastery level. The list goes on and
keeps growing daily.

Amidst the AT hype, however, it is often overlooked that Al models do not always
behave as expected and that for some models it is even impossible to explain
in a human-understandable way how they obtain their outcomes. This can be
harmful in situations where people are using Al to make important decisions.
Therefore, we need techniques to understand how AI models “reason,” how they
“behave” in different contexts, and how people can steer them with domain
knowledge. Researchers in the field of explainable AI (XAI) are developing
such techniques. This is a hard yet exciting multidisciplinary challenge, because
besides algorithmic solutions, XAl needs to consider what people need. In the
end, it is namely people who use Al to augment their skills, and who need to
be able to rely on it.

Thus, this thesis is about Al, explanations, and people. Essentially, we will study
how outcomes of Al models can be explained to people while tailoring different
explainability solutions towards people’s needs, their experience with Al, and
the context in which they use Al In particular, we will harvest the power of
data visualisation and study how explanations supported by visualisations affect
people’s perceptions of Al systems, for example, their trust in those systems
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and how well they understand them. In addition, we will study how people can
control Al models while being supported by visual explanations.

In total, this thesis presents 5 elaborate studies about XAI for adolescents
and adults, not coincidentally in the domains mentioned before: healthcare,
agrifood, and education. These studies investigate three main approaches for
explaining AT models: visual analytics, visualisation-supported justification, and
visualisation-supported control. The following chapters will clarify these terms.
Overall, the work presented in this thesis starts to disentangle the intricate ways
in which people calibrate their trust in Al systems, how visual explanations
can or cannot meet people’s actual needs, and how people interact with control
mechanisms for human-AT collaboration. Hopefully, this thesis inspires you and
many others to reflect more upon how XAI can or cannot be used to design
more trustworthy and controllable Al systems, and more generally, upon the
human side of Al



Chapter 2

Background and Related Work

This chapter is a kind of prequel for the new research in this thesis: it introduces
important concepts and existing work. It will first cover some background
information about Al itself (Section 2.1) to prepare the motivation for why
we need AI to be explainable (Section 2.2). Section 2.3 will then discuss
why explainable Al is challenging: the problem is interdisciplinary and needs
both algorithmic and human-centred approaches (Sections 2.4 and 2.5). Once
you grasp what explainable Al is and how complex it is, you might wonder
how researchers evaluate explanations. Section 2.8 will answer your questions.
The final sections will introduce two approaches that lie at the heart of the
research in the next chapters: visualisation (Section 2.6) and control mechanisms
(Section 2.7) to facilitate explainability. Prepare for an enlightening start with
coffee machines, cute cats and chicken chicks, and risky pyramids!

2.1 What Is Al?

First things first. If we're going to talk about artificial intelligence, we need to
agree on what that is. And I mean what is currently possible, not the often
dystopian technologies you typically see in science-fiction movies. This section
will give you a high-level taste of how Al algorithms work nowadays. We will
restrict ourselves to some basic concepts since an introduction to Al can be
a book on its own. In fact, there are many accessible examples already, for
example (Buijsman, 2020; Domingos, 2015; Mitchell, 2019). For now, I will only
present the aspects that are relevant to understand the rest of the story and
the motivation for this thesis.
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To start off, let me immediately stress that artificial intelligence is a kind of
buzzword. The word “intelligence” misleads many people into expecting that
we're dealing with something similar to human intelligence. That is not the
case at all. Essentially, Al is mostly mathematics and finding patterns in data.
Furthermore, Al models are specialised in narrow tasks, such as deciding whether
an image is a cat or a dog, translating sentences, converting speech to text,
playing chess or go, predicting the next numerical values in a time series, and so
on. Besides those tasks, they can do literally nothing and they cannot generalise
their “knowledge.” For example, Al models might excel at distinguishing cats
from dogs, but as such do not “learn” anything about mammals, different breeds,
the concept of having four legs, the emotional value humans attach to their
pets, or distinguishing tigers from wolves. Thus, AT models are the “ultimate
idiot savants” (Mitchell, 2019, p. 217). This is completely different from how
we as humans reason and learn.

So how does Al work? And what is the difference between an Al algorithm and
an Al model? Figure 2.1 shows a high-level representation of the Al lifecycle.
First, real world data or knowledge is processed according to some recipe,
which is the AT algorithm. This recipe then results in an AI model, a piece
of software that transforms given input into output. You could compare Al
models to coffee machines: when you put something in (coffee beans and water),
they spit something out (coffee — if you're lucky). Following our metaphor, Al
algorithms are like the manufacturing process of these coffee machines. Finally,
people use Al models to obtain insights or make informed decisions about
something. For example, if an Al model is built to classify photos as cats or
dogs, you could give it a photo and it would output ‘cat’ or ‘dog’ (also when the
photo depicts something completely different, say, a lamp). Obtained insights
may lead to new data or knowledge, which can be used to create new Al models.

Some types of AT models, unlike real coffee machines, can create new
“knowledge” themselves and thus “learn.” For example, the AlphaGo
algorithm lets different models play Go against each other to gain
“knowledge” about which moves lead to victory (Fu, 2016). This is called
reinforcement learning (Russell and Norvig, 2021). Bare in mind, though,
that this “learning” is still different from human learning and only possible
because people actively guide and monitor it.

The AT algorithm is of course the key link in the above cycle. It is the place
where researchers apply clever logical and mathematical techniques to build
AT models specialised in a specific task. Broadly speaking, there are two main
streams in Al: symbolic and subsymbolic Al

Symbolic AI algorithms combine and process small chunks of human
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Figure 2.1: Abstract representation of the Al lifecycle. Real-world data or
knowledge is processed by a symbolic or subsymbolic Al algorithm to create an
AT model, which in turn can be used by people to transform a given input into
an output. (Credits: gear, coffee machine, mug, and people by flaticon.com.)

knowledge with logical rules and probabilistic reasoning. A famous example
is MYCIN (Shortliffe, 1977), a so-called expert system from the 1970s that
helped physicians diagnose and treat infections with hundreds of rules based on
knowledge collected from physicians. An advantage of symbolic AT models is
that they can explain their reasoning process by keeping track of which rules
they follow. The downside, however, is that they do not scale up to large or
difficult problems (Russell and Norvig, 2021).

Subsymbolic AT “learns” from examples. A subsymbolic algorithm needs tons
of human-labelled data, say, photos with a label ‘cat’ or ‘dog’, and then uses
this training data to build a model. This is done iteratively: for each example
in the training data, the model outputs a label and compares it to the true
label. Then, it modifies its parameters to decrease the difference, so it becomes
more likely to perform well on future examples (Russell and Norvig, 2021).
Famous subsymbolic algorithms are neural networks, for which Figure 2.2
shows a toy example. Roughly, the neural network converts an input image
into numbers and feeds them into the input layer, the hidden layers do many
computations, and finally, two numbers come out of the output layer. The input
image is classified as the label with the highest number; in this case ‘cat’. We
skip the mathematical details of the computations here, but what’s important
is that all connections are assigned a weight, that is, a number. These are
the parameters that the algorithm updates iteratively. In other words, neural
networks try to find weights such that they make the least mistakes for the
labelled training data. To conclude, it turns out that neural networks are
currently the most performant AI approach for many tasks. One advantage is
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Figure 2.2: A neural network classifies an example image by doing tons of
computations, using the weights of its connections. These weights are optimised
by the algorithm. (Credits: animals by flaticon.com, and picture of cat Schrodi
by Ann De Turck. Schrodi received chicken treats as a reward for his modelling.)

that similar techniques yield performant models in different contexts. Yet, real
neural networks can have billions of connections, making it unfeasible for us to
understand why they achieve a certain output: we only see billions of weights.

2.2 Why We Need Explainable Al

Al models are often applied as black boxes: you have no idea what happens
inside; you just put something in and wait until something “magically” comes
out (see Figure 2.3 top). If you like the output, you can happily move on with
your life. But what if you are suspicious, surprised, or curious about what
the model did behind the scenes or why it didn’t yield another output (see
Figure 2.3 bottom)? In that case, you need an ezplanation for the outcomes.
Put differently, the model should be explainable or support explainability.
Getting an explanation is often desirable for at least three reasons: AI models
do not always behave as expected, peeking inside black boxes is not always
possible or useful, and explainability is becoming a legal right.

Al Does Not Always Behave As Expected

Let’s start with a simple example. Say you have an Al model that detects the
colour of animals. As shown in Figure 2.4, the model seems to do a perfect
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Figure 2.3: Al models are often black boxes: give it some input and wait for the
output. Top: The rationale behind that output, however, is unclear. Bottom:
Unexpected outputs sometimes occur without obvious reasons. (Credits: egg
by Darius Dan; chick by Smashicons; gear by flaticon.com.)

job: the gorilla is grey, the goat is green, the bear is brown, the bat is blue,
and the rabbit is red. But then, all of a sudden it says a black wolf is white.
What’s going on? You might see where this is going: the model wasn’t detecting
colours at all; it was just generating a colour that starts with the same letter
as the given animal. It made many lucky guesses at first but ultimately failed.
This toy example illustrates that models can seem highly performant for the
wrong reasons. As a consequence, we could fall into the trap of believing that
such models are “intelligent” even though they are not.

The example above might seem far-fetched and rather innocent. However,
unexpected behaviour of AI models can have severe real-life implications as well.
Here are some examples:

e In 2014, Amazon developed an algorithm to screen anonymous resumes of
job candidates to predict who was likely to be hired. They found it could
still detect the candidates’ gender based on their word use and mostly
flagged men as suitable (Christian, 2021). This clearly reinforced sexism.
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Figure 2.4: A hypothetical AI model correctly detects the colour of five animals,
but then makes a strange mistake. (Credits: animals by Vitaly Gorbachev.)

e An algorithm that classified images of melanoma as either cancerous
or non-cancerous turned out to classify many non-cancerous images by
relying on visible artefacts, for example, medical instruments. During its
training, the algorithm learnt these artefacts only show up in images of
non-cancerous melanoma (Boggust et al., 2022). If deployed in practice,
such an algorithm could have left many cancerous melanomas undetected.

e In 2015, Google started to automatically tag photos in its Photos app.
While their algorithm detected Caucasian and Asian faces well, it tagged
a selfie of two African Americans as “gorillas” (Mitchell, 2019). It needs
no further argumentation that such labelling is completely inappropriate.

e An algorithm to identify objects in an image could be fooled by slightly
adapting images with changes invisible to the human eye. After
the changes, the algorithm confidently changed its classification from
the correct “bus” to “ostrich,” for example (Mitchell, 2019; Szegedy
et al., 2014). Although funny, this approach could be used to mislead
the algorithm for malicious purposes. Similarly, when stickers are
attached to traffic signs, self-driving cars might not recognise the signs
anymore (Eykholt et al., 2018).

There are many more of these examples and cautionary tales (Branwen, 2011),
but you get the point. Both my coloured animals and the more serious examples
underline that using AI models as black boxes is not always desirable. Instead, Al
models should be able to explain their outcomes, such that we can check whether
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they work as expected and whether unexpected outcomes are (inevitable) rare
side effects or a sign of larger severe shortcomings of the algorithm. In turn,
this “explaining to control” could be a stepping stone towards improving the
AT model, that is, “explaining to improve” (Adadi and Berrada, 2018).

Peeking Inside Black Boxes Is Not Always Possible or Useful

Maybe you are wondering: why not “peek inside black boxes” to see what they
are doing? After all, you recall from Section 2.1 that Al models are just doing
complex computations, not magic. Here are two reasons why “peeking” often
doesn’t work or is not enough.

First, AI models developed and used by companies are often protected by
copyrights or intellectual property measures, which does not allow for checking
their details and underlying training process. For example, banks might not
share how their algorithms determine which clients get a loan, music streaming
companies might not share how their algorithms recommend songs that match
clients’ preferences, and manufacturers of self-driving cars might not share
how their cars process sensor inputs to drive autonomously. In other words,
“peeking” is literally impossible for outsiders. To still get insights into protected
algorithms, there is a need for explanations that focus on algorithms’ behaviour,
regardless of their technical details. Section 2.4 will discuss how so-called
model-agnostic XAl techniques deal with this problem.

Second, the currently most performant and thus widely applied Al algorithms
are subsymbolic in nature and are being trained on huge amounts of data.
Remember from Section 2.1 that such algorithms are inherently complex or
even infeasible to understand. Take a trained neural network, for example.
It is not easy to translate its weights into rules that are understandable by
humans because they do not stand for human-interpretable concepts in the first
place (Mitchell, 2019). Of course, you might argue that “easier” AI algorithms
could bring consolidation. Unfortunately, there seems to be a trade-off today
between performance and explainability (Barredo Arrieta et al., 2020; Gunning
and Aha, 2019). Figure 2.5 shows how the AI techniques that currently yield
the most performant models (neural networks, tree ensembles, and support
vector machines) are also the most complex and therefore the least explainable.
However, some researchers point out that this trade-off is no definite truth:
there might be algorithms that are both very performant and interpretable (Liao
and Varshney, 2022; Rudin, 2019). In the long run, it might be better to stop
explaining black-box algorithms for supporting high-stakes decisions and instead
focus on developing performant yet interpretable algorithms (Rudin, 2019). But
as long as black-box Al models are being applied in practice, explanations seem
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Figure 2.5: The apparent trade-off between performance and explainability:
more performant Al algorithms are typically less explainable. XAT tries to push
the orange dots towards the pink area, which indicates both high performance
and high explainability. (Credits: image based on (Gunning and Aha, 2019).)

crucial to reasonably assess their strengths and weaknesses. At least they push
such algorithms more towards the desirable pink area in Figure 2.5.

Researchers sometimes call black-box AI models opaque. The two
reasons above correspond to two out of three forms of opacity defined
in (Burrell, 2016), namely “opacity as intentional secrecy” and “opacity
due to scale and how algorithms operate,” respectively. Section 2.5 will
introduce the third form: “opacity as technical illiteracy.”

Explainability Is Becoming a Legal Right

The call for explainability is gradually being reinforced by upcoming legislation,
ethical guidelines, and regulations on Al use. The European Union has put
itself at the forefront of regulating Al use and automated decision-making in
general, protecting people against potentially harmful use of AI technologies.
Back in 2016, for example, the adopted General Data Protection Regulation
(GDPR) already included a right to explanation (Goodman and Flaxman,
2017; Hamon et al., 2022). So, if an algorithmically made decision significantly
affects you, you have the right to ask for an explanation. Very recently, in
June 2023, the European Parliament also passed a draft law known as the
AT Act (Satariano, 2023). Figure 2.6 shows how this draft law proposes to
categorise Al technologies into 3 risk levels: minimal or no risk, high risk, or
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Figure 2.6: Classification of Al systems into 3 risk levels, as proposed in the
European AT Act. (Credits: image inspired by (Sioli, 2021); faces by justicon.)

unacceptable risk (Commission, 2023). Most AI technologies will be permitted
without restrictions, but Al for sensitive contexts (e.g., education, medicine, and
law) will need to comply with specific requirements. Al applications that conflict
with EU values will even be banned entirely; for example, social scoring and
technologies for manipulation or exploitation. In addition, the Al Act proposes
to install supervisory authorities that handle complaints from people affected
by AI. Even though these first steps towards Al legislation are sometimes met
by criticism (Laux et al., 2022) and concerns about potential restrictions for Al
innovation, they underline the urgency of explainable AI.

The AI Act proposes requirements around increasing transparency
and supporting human oversight, but this neither enforces XAI nor bans
black-box AI (Panigutti et al., 2023). Rather, the transparency requirement
demands that AT systems are clearly documented and contain instructions
for use, including the system’s limitations and capabilities. Furthermore,
the requirement of human oversight encompasses that humans should be
able to monitor the system’s operation, should be aware that they might
tend to overly rely on the AI system, and should be able to correctly
interpret the system’s outcomes. What’s important here is that XAI can
facilitate all these requirements, but it is not the only solution.
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Figure 2.7: XAl-related papers, conference proceedings, and book chapters
with the words ‘explainable’, ‘interpretable’, ‘transparent’, ‘understandable’, or
‘intelligible’. Based on a search on Scopus with the query (understandable OR
explainable OR interpretable OR transparent OR intelligible) AND
("artificial intelligence" OR "machine learning" OR "recommender
system*" OR "deep learning").

2.3 XAl, It's Complicated

The above arguments pro explainability make the challenge clear: we need
explainable AI, also known as XAI Overall, the goal of XAl is to come up
with techniques that allow humans to understand the rationale of AI models,
characterise their strengths and weaknesses, and foresee how they will behave in
the future (Gunning and Aha, 2019). Researchers poetically call this “opening
the black box.” The call for human-understandable and simple algorithms is as
old as Al itself (Freitas, 2014; Holte, 1993), but especially the past few years were
filled with enthusiasm. Figure 2.7 shows how the attention for XAl exploded:
XAI research was on the back-burner until 2002, but the number of scientific
publications has been increasing dramatically since then. The consensus so far:
XAI is a tough nut to crack.

A first challenge for XAT is that there are no widely accepted definitions for terms
such as ‘explanation’ and ‘understanding’ (Doshi-Velez and Kim, 2017; Lipton,
2018). The same actually holds for the whole of AI: what ‘intelligence’ means is
a deep philosophical question (Legg et al., 2007). Most researchers are pragmatic
about this and use different terms interchangeably; some of the most common
include ‘explainability’, ‘interpretability’, ‘transparency’, ‘understandability’,
‘intelligibility’, ‘explicability’, and ‘comprehensibility’ (Adadi and Berrada, 2018;



XAl IT'S COMPLICATED 13

Barredo Arrieta et al., 2020). Figure 2.7 shows that researchers have historically
been using ‘interpretability’ the longest, but ‘explainability’ seems to be taking
over since DARPA launched its XAI program in 2017 (Gunning and Aha, 2019).
These days, researchers seem to typically use ‘interpretability’ when they are
talking about making AI models transparent by design instead of black-box,
and ‘explainability’ when they mean justifying an Al model’s behaviour to end-
users (Hamon et al., 2022; Panigutti et al., 2023). In this way, interpretability
is a passive characteristic: any AI model ¢s inherently interpretable or not to
a certain degree (Barredo Arrieta et al., 2020). Explainability, however, is an
active characteristic: Al models are explainable when they do something to
clarify or detail their internal functions such that humans can understand them
more easily (Barredo Arrieta et al., 2020). Thus, the difference boils down to
whether humans are involved. This relates to the next challenge.

A second challenge for XAl is that explainability is a multidisciplinary problem.
It can be tackled from at least two perspectives: an algorithmic and a human-
centred perspective. Take a look at Figure 2.8. The blue box focuses on the
AT system, which involves three parts: the data used for training, the trained
Al model, and the outcome. Explanations can focus on each of those parts.
Yet, depending on the focus, different explanation techniques are necessary.
Mind that these techniques are essentially mathematical in nature. Section 2.4
will discuss these algorithmic XAI approaches in detail. Next, the yellow box
focuses on the people using an Al system. Explanations can help them fulfil a
specific need, such as assessing the system’s fairness or calibrating their trust
in the system. The tricky part is that different target audiences have different
explainability needs: what computer scientists consider a useful explanation
could be incomprehensible for teenagers, for example. In addition, humans
are complex creatures who perceive things differently for all kinds of reasons,
have different perspectives on what “good” explanations are, have different
attitudes towards Al and technology in general, and sometimes hold inconsistent
or irrational beliefs. Section 2.5 will discuss how XAI research tries to carve a
way through this tricky labyrinth of human perceptions and values.

A third challenge for XAI is a result of the first two: the research field is
pretty scattered. Researchers who focus on algorithms have been working rather
isolated from researchers who focus on humans, and vice versa (Abdul et al.,
2018). In addition, explainability is related to many intertwined topics such as
trust, fairness, bias, causality, accountability, privacy, and reasoning (Abdul
et al., 2018). Figure 2.9 shows how research into these topics is often isolated.
For example, interpretable machine learning and algorithmic fairness are closely
connected because of their focus on algorithms, but there is less overlap with
human-centred concepts such as trust and interaction, which are studied more
in the context of recommender systems and intelligent agents and systems.
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Figure 2.8: XAI is linked to both algorithmic and human aspects. (Credits:
image based on (Afchar et al., 2022), egg by Darius Dan; chick by Smashicons;
gear, dinosaur, and people by flaticon.com.)

2.4 Algorithmic XAl approaches

Let’s start with something you might not realise: although AI techniques such
as neural networks are demonstrably powerful, we don’t yet fully understand
how they work and cannot guarantee they will work in new contexts (Lipton,
2018). And “we” also includes Al experts. That’s right, “no one really knows
how the most advanced algorithms do what they do” (Knight, 2017). This does
not mean Al algorithms are plotting behind our backs to dominate us; it means
it is mathematically unclear how neural networks “learn” to generalise. In other
words, researchers see their complex Al algorithms yield effective models, but
they don’t know why. Compare it to anaesthesia for medical operations: while
everyone who has been fully sedated for surgery knows it is effective, there is
still a lot unknown about why anaesthesia works (TED-Ed, 2015). But figuring
out the mathematics behind Al is hard. Now what?

Fortunately, researchers have developed tons of algorithmic techniques that give
clues about what is happening insides black boxes (Adadi and Berrada, 2018;
Barredo Arrieta et al., 2020; Du et al., 2019; Guidotti et al., 2019b; Montavon
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Figure 2.9: Network of different research topics related to XAI. Each circle is
a paper and lines connect papers when one cites the other. Tightly connected
papers form a cluster and the further clusters are away from each other, the
more isolated their topics are. (Credits: image from (Abdul et al., 2018).)

et al., 2018; Stiglic et al., 2020; Vilone and Longo, 2020; Zhang and Chen, 2020).
To understand these techniques in detail, you would need technical knowledge
about different kinds of AI algorithms, but that would lead us too far. This
section will therefore only present the overall ideas. Figure 2.10 shows a general
classification of algorithmic XAI approaches: to explain black boxes, we can
either turn towards inherently interpretable Al or do reverse engineering. For
the latter, we can explain the whole model or single outcomes, either in a
model-specific or a model-agnostic way.

Inherently Interpretable Al

Remember the suggestion to “peek inside black boxes” in Section 2.2. Sometimes
it makes sense to do so: when an Al model is inherently interpretable, it can
justify its outcomes and no further explanation is needed. In other words, a
model can itself be an explanation (Afchar et al., 2022). Researchers speak of
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Figure 2.10: Classification of algorithmic XAI approaches. (Credits: image
inspired by (Guidotti et al., 2019b); egg by Darius Dan; chicks by Smashicons;
cat by flaticon.com.)

“glass” (Abdul et al., 2018; Sokol and Flach, 2018), “white” (Herm et al., 2022;
Lundberg et al., 2019) or “transparent boxes” (Barredo Arrieta et al., 2020;
Gilpin et al., 2018), and sometimes even “ante-hoc explainability” (Antoniadi
et al., 2021; Vilone and Longo, 2020). Two classic examples are decision trees
and k-nearest neighbours (Barredo Arrieta et al., 2020).

Decision tree algorithms do what they suggest: they build “trees” to support
decision-making. You have already encountered a “tree” in Figure 2.10; to
categorise an algorithmic XAI approach, you followed the arrows from the top
box until you got to an end. Decision tree algorithms construct such trees based
on data. Say you have lots of data about whether readers like thesis texts,
together with information about the theses’ number of pages, average number
of images per chapter, topic, and so on. Then, the algorithm will construct a
tree such that it fits the data as well as possible. For example, the end result
could look like the decision tree in Figure 2.11a. Given a new thesis text, the
decision tree will predict that people like it whenever it has less than 100 pages,
studies cats, or has at least five images per chapter on average. I made up this
decision tree but it illustrates how it inherently justifies its outcomes: to know
what led to a certain outcome, simply follow the path in the tree that led to it.

Similarly, k-nearest neighbours algorithms make decisions in an intuitive way.
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(a) decision tree (b) k-nearest neighbours

Figure 2.11: Two examples of inherently interpretable AI: (a) decision
trees literally show the path towards decisions, and (b) k-nearest neighbours
algorithms decides based on the labels of the k most similar data points.

Say you again have a dataset on thesis texts, where each thesis has a label ‘like’
or ‘dislike] For any new thesis, the algorithm will simply look for the & most
similar theses in the dataset. These are the neighbours. Then, the algorithm
uses the label that is most frequent among the neighbours as prediction. In
general, the number k is fixed and chosen beforehand. In Figure 2.11b, for
example, the algorithm uses & = 5 and predicts that people will like the new
blue thesis text, because most neighbours have a ‘like’ label (3 out of 5). To
conclude, k-nearest neighbours algorithms don’t need additional explanations
because every outcome is fully determined by its neighbours in the dataset.

Besides decision trees and k-nearest neighbours algorithms, there are 4
more families of inherently interpretable Al techniques: linear or logistic
regression, rule-based learners, general additive models, and Bayesian
models (Barredo Arrieta et al., 2020). Section 2.5 will make some critical
remarks on how transparent all these Al techniques really are for humans.

Reverse Engineering

Not all AT algorithms yield inherently interpretable models, however. Section 2.2
explained some AT models are inherently complex, which is why it isn’t useful
to look at their insides. In such cases, the only thing to work with are inputs
and outputs. By studying how these are related, the hope is to learn something
about what the AI model is doing. This is called reverse engineering (Guidotti
et al., 2019b) or post-hoc explainability (Adadi and Berrada, 2018; Afchar et al.,
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2022; Du et al., 2019). Some researchers, however, object against the latter term
because ‘explainability’ may be misleading: reverse engineering approximates
the original model, but there is no guarantee it captures what the model is really
doing (Rudin, 2019). Think of the example in Figure 2.4: based on the first
few inputs and outputs, you might approximate the model by saying it detects
colours in images, but that’s not what it does at all. Researchers have developed
countless techniques to reverse engineer Al models (Adadi and Berrada, 2018;
Barredo Arrieta et al., 2020; Guidotti et al., 2019b; Stiglic et al., 2020), which
can be classified in two ways. First, explanations can have different scopes,
ranging from single outcomes to the whole model. Second, some explanations
only work for models of specific Al algorithms, while others can be applied to

any type.

Model vs Outcome Explanations. The first way to classify algorithmic XAI
methods relates to their scope, that is, how many outcomes the resulting
explanations cover. Explanations covering all possible outcomes are called model
explanations or global explanations; they clarify the algorithm’s overall logic.
Explanations covering only a single outcome are called outcome ezxplanations
or local explanations; they clarify the algorithm’s outcome for a single input.
Between these two extremes, it is also possible to learn more about how a model
behaves by investigating multiple inputs and corresponding outputs through
model inspection. This implies that the ‘global” and ‘local’ categories are not
strictly separated: you may learn something about a model on a global level by
looking at multiple outcome explanations on a local level (Afchar et al., 2022).

Model-Specific vs Model-Agnostic Explanations. The second way to classify
algorithmic XAI methods relates to which AT models they can be applied to.
Some methods only work for a specific type of model, whereas others work for
any model. The former XAI methods are called model-specific; the latter model-
agnostic. Model-agnostic explanations fall into four different types: visualisation,
knowledge extraction, influence methods, and example-based methods (Adadi
and Berrada, 2018). For example, visualisation gives insights in the Al model’s
behaviour by showing pairs of inputs and outputs. Visualisation is a strong
technique to uncover patterns and will be further discussed in Section 2.6.

Given how we defined ‘Al algorithm’ and ‘Al model’ in Section 2.1, the
terms ‘model-specific’ and ‘model-agnostic’ are slightly confusing. One Al
algorithm can generate endless models when given different data, so it would
be weird if model-specific explanations only worked for a single model. In
reality, model-specific explanations work for any model created by a specific
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e Decision tree: Approximate the ATl model with a decision tree.

Approximate the Al model with decision rules.

How strongly do features determine outcomes?
e Saliency mask: Highlight parts of texts or images that influenced the outcome.
e Partial dependence: How do outcomes relate to inputs with reduced features?
e Sensitivity analysis: How do outcomes change when inputs change?
e Activation maximisation: Are there patterns in which neurons are being
activated in neural networks for different inputs?

Figure 2.12: Seven general algorithmic XAl techniques together with some
examples that realise them, grouped by their scope and which algorithms they
explain. Decision trees can be converted to decision rules by listing all decision
paths. (Credits: references and classification are from (Guidotti et al., 2019b).)

type of algorithm, so it would be better to call them “algorithm-specific.”
For consistency, we would then talk about “algorithm-agnostic” techniques.

Figure 2.12 shows seven algorithmic XAI approaches grouped according
to the two categorisations above: decision trees, decision rules, feature
importance, saliency masks, partial dependence, sensitivity analysis, and
activation maximisation. Most of these approaches occur at different places
because they can be implemented in several ways. For example, decision trees
can approximate any whole AT model (global, model-agnostic), but also smaller
parts of a specific model (model inspection, model-specific).

2.5 Human-Centred XAl Approaches

Research into algorithmic XAI methods is extremely relevant, but it is also
important to remember these methods are employed to support humans.
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Explainability is not a strictly algorithmic characteristic, but lies in how people
perceive the explanation (Liao and Varshney, 2022). Many human factors
affect how people assess an explanation: the person’s technical training and
experience with Al, the questions that they want to answer, the context in
which an Al-supported decision has to be made, and so on. The following
sections will discuss these aspects in more detail.

Sometimes Interpretable Isn’t Really Interpretable

Seeing the insides of AI models doesn’t necessarily mean wunderstanding
them (Ananny and Crawford, 2018). We already saw for the case of neural
networks that seeing countless weights doesn’t help us understand how the
networks “reason”: we cannot attach meaning to those weights and our minds
cannot simulate (Lipton, 2018) all computations that involve those weights.

Similarly, algorithmic XAI approaches can make AI models interpretable in
principle, but that isn’t helpful in practice if people don’t find the explanations
useful for the insights they are looking for, or if they still cannot simulate them.
For example, decision trees are inherently interpretable and are therefore popular
to approximate Al models with (see Figure 2.12). However, decision trees can
still be impossible to grasp if their decision paths contain hundreds of conditions.
The same holds for other “interpretable” AI models such as linear models: if
they contain hundreds of parameters, they are not simulatable (Lipton, 2018).
Overall, if someone cannot simulate an Al model based on an explanation
within a reasonable timespan, the explanation isn’t really helpful. Yet, what
someone considers reasonable is subjective and can only be uncovered with
human-centred approaches.

How People Explain Things

Human-centred XAI draws lessons from the social sciences, amongst others,
to better align explanations for Al models with how people define, generate,
select, present, and evaluate explanations in general (Miller, 2019). Let’s briefly
discuss three main lessons presented in (Miller, 2019).

First, explanations are typically contrastive: people don’t ask why a specific event
has taken place, but rather why another event didn’t take place instead. This
inspired XAl researchers to develop algorithmic techniques called counterfactual
explanations, which compute how much a given input should hypothetically and
realistically change to change the original model outcome to a desired one (Dandl
et al., 2020; Goyal et al., 2019; Guidotti et al., 2019a; Kaffes et al., 2021; Keane
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and Smyth, 2020; Laugel et al., 2019; Moore et al., 2019; Pawelczyk et al., 2020;
Poyiadzi et al., 2020; Sharma et al., 2020; Spooner et al., 2021; Wachter et al.,
2017; Wang et al., 2021; Yang et al., 2020b). In turn, human-centred XAI
researchers study how these counterfactual explanations help decision-making
in practice (Barocas et al., 2020; Kasirzadeh and Smart, 2021; Shamma et al.,
2022) and meet people’s needs (Riveiro and Thill, 2021; Shang et al., 2022).

Second, explanations are selected: instead of explaining an event by exhaustively
listing all its causes, people typically select one or two causes and consider those
to be the explanation. For example, if a fan shouts during a tennis rally right
before a player hits the ball out, we might say that the miss was caused by
the shouting. Doing so, however, we may ignore other contributing causes: the
player was extra tensed because they were about to win the championship, there
was a slight breeze that blew the ball off course, the player wasn’t distracted by
the shouting but by the fan’s ugly sweater, the fan was shouting the name of the
player’s secret lover, and so on. In XAI, researchers call selected explanations
justifications. Justifications explain why specific model outcomes are “good”
by providing some easy-to-understand insights about how they were obtained,
without covering the full technical reasoning process (Adadi and Berrada, 2018;
Ehsan et al., 2019; Vig et al., 2009; Wang et al., 2019a). Not throwing all
technical details at “technically illiterate” (Burrell, 2016) people is important
because they might be alienating instead of illuminating (Cramer et al., 2008).

Third, explanations are social: they are part of a conversation between two
parties, where one party is trying to transfer information about an event’s cause
to another party (Lewis, 1986, p. 217). Important in this conversation is that
the explaining party adapts to the other party’s current beliefs and knowledge.
For example, if AT developers explain their new algorithm to colleagues, they
dive into the technical and mathematical aspects because they know their
colleagues have the required background for that. But to people with little
AT knowledge, Al developers might explain that their algorithm is like the
manufacturing process of a coffee machine (assuming they like my metaphor in
Section 2.1). For XAI, this means explanations need to be tailored to whoever
is receiving them. The next subsection covers how that can be done.

There are more relevant lessons to be drawn from how people explain
things, including that explanations focus on the abnormal, are truthful,
and refer to causes instead of probabilities (Miller, 2019; Molnar, 2021).
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Different People, Different Needs

Different people have different explainability needs (Ehsan and Riedl, 2020).
To address this, Figure 2.13 shows how XAI researchers have proposed to
categorise people in at least three broad groups linked to specific explainability
needs (Hind, 2019; Langer et al., 2021; Mohseni et al., 2021):

e Al novices are people who are impacted by Al systems, but have little
to no expertise in the technicalities of AI. These laypeople in terms of Al
mainly require explanations to get a better overall understanding of an
AT model, so they can assess whether it treats them fairly, they can trust
its outcomes, and it protects their data privacy.

o Data experts are data scientists and domain experts who use Al systems
for analysis, research, or decision-making, but typically lack expertise in
the technicalities of AI. Similar to AI novices, they require tools to assess
model uncertainty and trustworthiness, but these tools should be more
advanced so they can also tune and compare Al models.

e Al experts build and deploy Al models or develop algorithmic XAI
techniques. They need to interpret their models to know whether they
are working as expected and can be improved.

Some researchers further refine the user groups and their explainability
needs (Hind, 2019; Langer et al., 2021; Suresh et al., 2021). For example,
regulators such as ethicists, lawyers, and governments supervise how all
other groups interact with Al systems and are mainly concerned about
trustworthiness and accountability.

The classification above is rather coarse (Liao and Varshney, 2022): groups
overlap and especially within the group of Al novices the level of Al expertise can
vary quite a lot depending on people’s degree or interests. A more fine-grained
approach is to directly identify people’s explainability needs with questions
related to possible insights in AT models (Liao et al., 2020, 2021; Liao and
Varshney, 2022). Figure 2.14 shows how these questions can cover what kind of
data was used to train the model, what it outputs, how accurate the outcomes
are, how they were obtained, how the outcomes relate to the input, why
the outcomes weren’t different, how the input should change to change the
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Figure 2.13: Coarse classification of different user groups with respect to
Al together with most common design goals for explainability and evaluation
measures. (Credits: image from (Mohseni et al., 2021).)

outcomes, how much the input can change without changing the outcomes,
what the outcomes would be for different input, and so on.

Human-Centred Design for XAl

At this point, you might have realised there is no one XAI technique to rule them
all. Alas, “explainability is not as simple as providing a nice explanation and
all is well” (Weber et al., 2021). And matters are even more complicated. The
same people can have different explainability needs in different contexts (Suresh
et al., 2021). In sum, different people in different contexts need different
XAI solutions. For example, during analysis, nurses who use an Al model for
monitoring patients at risk might need advanced insights into its performance
across the whole pool of patients. However, during a consultation, these insights
need to be focused on how one patient can lower their risk and they need to be
understandable for the patient too. Thus, it is important to know who needs to
know what when, and what explanation types are adequate (Dhanorkar et al.,
2021). Moreover, explanations can be represented in many forms, including as a
text, a visualisation (see Section 2.6), or a mix of both (Szymanski et al., 2021).
To find appropriate explanation techniques and formats for specific people
in their specific context, XAI researchers who build explanation interfaces
must involve them in a human-centred design process (Abras et al., 2004). In
conclusion, “XAI presents as much of a design challenge as an algorithmic
challenge” (Liao and Varshney, 2022).
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‘What kind of data was the system trained
on?

‘What is the source of the training data?

How were the labels/ground-truth produced?
What is the sample size of the training data?
What dataset(s) is the system NOT using?
What are the potential limitations/biases of
the data?

‘What is the size, proportion, or distribution of
the training data with given feature(s)/feature-
value(s)?

What kind of output does the system
give?

What does the system output mean?

‘What is the scope of the system’s capability?
Can it do...?

How is the output used for other system
component(s)?

How should I best use the output of the system?
How should the output fit in my workflow?

How accurate/precise/reliable are the
predictions?

How often does the system make mistakes?
In what situations is the system likely to be
correct/ incorrect?

What are the limitations of the system?
‘What kind of mistakes is the system likely to
make?

Is the system’s performance good enough
for...?

How does the system make predictions?
What features does the system consider?

Is [feature X] used or not used for the
predictions?

‘What is the system’s overall logic?

How does it weigh different features?

What kind of rules does it follow?

How does [feature X] impact its predictions?
What are the top rules/features that determine
its predictions?

‘What kind of algorithm is used?

How were the parameters set?

Why/how is this instance given this
prediction?

What feature(s) of this instance determine the
system’s prediction of it?

Why are [instance A and B] given the same
prediction?

Why is this instance NOT predicted to
be [a different outcome]?

Why is this instance predicted [P instead of a
different outcome Q]?

Why are [instance A and B] given different
predictions?

How should this instance change to get a
different prediction?

What is the minimum change required for this
instance to get a different prediction?

How should a given feature change for this
instance to get a different prediction?

What kind of instance is predicted of [a
different outcome]?

What is the change permitted for this
instance to still get the same prediction?
What is the range of value permitted for a given
feature for this prediction to stay the same?
What is the necessary feature(s)/feature-
value(s) present or absent to guarantee this
prediction?

What kind of instance gets the same predic-
tion?

What would the system predict if this
instance changes to...?7

What would the system predict if a given
feature changes to...?

What would the system predict for [a different
instance]?

How/why will the system change/adapt/im-
prove/drift over time? (change)

Can I, and if so, how do I, improve the system?
(improvement)

Why is the system (not) using a given
algorithm /feature/rule/dataset? (follow-up)
What does [a machine learning terminology]
mean? (terminological)

What are the results of other people using the
system? (social)

Figure 2.14: A slightly adapted version of the “XAI question bank,” which
contains 10 categories of prototypical questions to elicit people’s explainability
needs. These can then be used to select algorithmic XAI methods that align
with the categories (Liao et al., 2020, 2021; Liao and Varshney, 2022).
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This is where human-computer interaction or HCI comes in. Briefly, HCI is
an interdisciplinary research field that connects computer science, social sciences,
and any other domain that applies technology (Carroll, 1997; Olson and Olson,
2003; Shneiderman et al., 2016). HCI researchers study how interfaces can be
designed and tailored to specific end users or application contexts to improve
user experience, for example. To do that, HCI researchers work closely together
with end users to discover their personal and context-specific needs. In the
scope of XAI, this translates to investigating what effective explanations look
like and which factors affect their efficacy.

2.6 Visualisation for XAl

So far, we have covered many general examples of explanations. This section
focuses on how visualisation can compactly represent lots of information in an
explanation.

b

You probably know the saying: “A picture tells more than a thousand words.
We humans are incredibly skilled at quickly processing visual information: we
can promptly recognise patterns, connect them to meaning, and act upon it.
The research domain of information visualisation taps into this phenomenon
and designs visual representations of data to help people carry out tasks more
effectively (Munzner, 2014). Here, ‘visualisation’ is not just an umbrella term
for pictures or graphics such as the schemes in Figure 2.1 and Figure 2.2. It
means representing information in a more abstract way; for example, as Venn
diagrams (see left part of Figure 2.5), scatter plots (see right part of Figure 2.5
and Figure 2.11b), stacked area charts (see Figure 2.7), networks (see Figure 2.9
and Figure 2.11a), and so on.

Using visualisations for XAT is useful when explanations still contain a lot of
information. By representing that information as a well-designed visualisation,
you can effectively process it. Yet, the design space for visualisation is huge
and whether a visualisation is ‘good’ depends on the task at hand and the
target audience (Munzner, 2014). This is why information visualisation fits
well with the philosophy of human-centred design, which we covered in the
previous section. The following subsections present how explanations and
visualisations can be combined for different target audiences, either with rather
simple visualisations or with more complex interactive dashboards. In this thesis,
I am using the terms ‘visual explanation’ and ‘visualisation-supported
explanation’ interchangeably; the latter to stress that visual explanations in
this thesis are more than highlighted regions in images (Chen et al., 2019) or
image descriptions (Hendricks et al., 2016).
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Visual Explanations

Figure 2.15 shows five examples of visual explanations. First, Figure 2.15a
explains how an AI model predicted which life-insurance plan is suitable
for a client by depicting how strongly different parameters were taken into
account (Bertrand et al., 2023). Thus, the underlying algorithmic explanation
technique is feature importance. Here, the model predicted a rather safe plan and
the bar chart in the middle shows that this is mainly due to the client wanting
to invest a large proportion of their assets. Second, Figure 2.15b is an example
of sensitivity analysis (Szymanski et al., 2021). An AT model predicts how many
seconds a reader would need to finish reading a news article based on parameters
such as word count and whether the article contains pictures. The line graph
shows how much the prediction would change according to how one of these
parameters changes: the predicted time increases when the word count increases
and vice versa. Third, Figure 2.15¢ visualises a why explanation: the bars and
links show how someone’s list of liked songs and the context of those songs led to
recommended songs (Bostandjiev et al., 2012). Fourth, Figure 2.15d is similar to
Figure 2.15a: it visualises feature importance information for houses (Lundberg
and Lee, 2017). However, the bars are replaced by dots and many houses are
plotted together, additionally colouring the dots based on their underlying
feature value. The visualisation shows, for example, how high values for the
second feature (RM = number of rooms) raise the predicted house price. Thus,
this example illustrates how similar information can be visualised in different
ways. Finally, Figure 2.15e only borderline fits in this list because it isn’t really
an abstract visualisation of data. Yet, it is an interesting example because it
demonstrates an ezample-based explanation (Cai et al., 2019), which we haven’t
covered before. Specifically, an image recognition model explains why it couldn’t
recognise someone’s drawing by showing the most similar classified training
examples it knows and overlays them with the drawing.

Visual Analytics

A specialised subfield of information visualisation is visual analytics. Its general
goal is to foster analytical reasoning through highly interactive interfaces that
combine several visualisations on the same screen (Cui, 2019; Ham, 2010; Keim
et al., 2008; Thomas and Kielman, 2009). Concretely, visual analytics is typically
meant for data experts and Al experts (Mohseni et al., 2021) (see Section 2.5).
It allows them to visually explore large amounts of data so they can discover
complex relations, detect biases, and iteratively refine hypotheses. Of course,
this requires advanced interactions with the visualisations such as selecting
interesting data, exploring different subsets of the data, reconfiguring data by
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Figure 2.15: Examples of visual explanations for different AT models. (a) Split
bar chart for feature importance (Bertrand et al., 2023). (b) Line graph for
sensitivity analysis (Szymanski et al., 2021). (c) Bar charts and network in
a why explanation (Bostandjiev et al., 2012). (d) Bee swarms for feature
importances (SHAP website). (e) Example-based explanation (Cai et al., 2019).

sorting and rearranging, changing the visual appearance itself, showing more or
less details, filtering data on specific conditions, and highlighting connected data
in different visualisations (Yi et al., 2007). In addition, given the rise of ‘big
data’, visual analytics is these days often used in combination with AI models
that process these huge amounts of data (Chatzimparmpas et al., 2020a,b;
Endert et al., 2017; Hohman et al., 2019b; Keim et al., 2010; Liu et al., 2017;
Lu et al., 2017). In the context of XAI, data and Al experts use visual analytics
to visualise how AI models behave, compare different models, and investigate
counterfactual explanations (Chatzimparmpas et al., 2020a,b; Endert et al.,
2017; Gomez et al., 2020; Hohman et al., 2019b; Liu et al., 2017; Lu et al.,
2017; Zhang et al., 2019). Figure 2.16 shows some impressive examples of how
visualisations and interaction can be deeply integrated, and how AI models can
be steered through visual control mechanisms. This relates to the next section.


https://github.com/shap/shap
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Figure 2.16: Examples of visual analytics systems for (a) random forests (Zhao
et al., 2019), (b) counterfactual explanations (Cheng et al., 2021), (c) deep Q-
networks (Wang et al., 2019b), (d) decision trees (van den Elzen and van Wijk,
2011), (e) clustering (Cavallo and Demiralp, 2019), (f) decision rules (Ming
et al., 2019), (g) generative adversarial networks (Kahng et al., 2019), and
(h) sequence-to-sequence models (Strobelt et al., 2019).
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2.7 Control Mechanisms for XAl

So far, we have focused on how XAI can clarify the reasoning process behind
the outcomes of AI models. What would be the next step? What should you
do with this transparency? If you are happy with a model’s outcomes and how
it works, you might not want to do anything. But if you notice that the model
makes faulty inferences, you might want to intervene and correct them (Storms
et al., 2022). For example, suppose you like spending me-time on Friday evening
while watching romcoms. This week, however, your friend who hates romance
comes over for a movie. If your favourite streaming service only recommends
romcoms because it infers that’s what you like on Friday evenings, you need to
somehow tell it about the changed context (Amatriain et al., 2009). Likewise,
when an explanation tells you that an AT model comes to the right outcomes
for the wrong reasons, you might want to improve its decision process. Imagine
your favourite streaming service recommends the Lord of the Rings, which you
like, but its explanation reveals that it did so because it unrightfully assumes
you like fantasy. At that moment, you would need something to tell it you just
like the Lord of the Rings because you fancy Orlando Bloom. The silver lining
in these examples is that transparency might evoke a higher need for control
over Al models. Conversely, if you have control over an Al model, you better
understand how it uses your feedback to change its decisions. In other words,
transparency and control can be two sides of the same coin (Storms et al., 2022)
and this is precisely why control mechanisms play such a big role in XAI

To gain more control over AI models, researchers have developed control
mechanisms to actively involve people in the decision process (Jannach et al.,
2017). For example, in recommendation systems, you could communicate
your initial preferences through forms (Hijikata et al., 2012) or conversational
dialogues (Goker and Thompson, 2000) and afterwards, you could steer
recommendations through critiquing (Chen and Pu, 2012; Luo et al., 2020;
Petrescu et al., 2021), filtering and sorting (Bostandjiev et al., 2012; O’Donovan
et al., 2008), interacting with (visual) explanations (He et al., 2016; Schaffer
et al., 2015; Tsai and Brusilovsky, 2019b, 2021), or changing the recommendation
algorithm itself (Ekstrand et al., 2015). Figure 2.17 shows two examples of how
recommender systems can be controlled in combination with visualisations. Yet,
how much control and which mechanisms Al systems should incorporate depends
on the context, people’s personal characteristics, and their mood (Cramer et al.,
2008; Jameson and Schwarzkopf, 2002; Jin et al., 2020; Knijnenburg et al., 2011;
Konstan and Riedl, 2012; Millecamp et al., 2018; Xiao and Benbasat, 2007).
Section 2.6 illustrated this for visual analytics: while data and Al experts might
benefit from such highly controllable systems, they are likely too complex for
AT novices. This again underlines the importance of human-centred design.
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Figure 2.17: Examples of how recommendation systems can be controlled.
(a) Sliders on the left allow to set preferences for different musical attributes and
visualisations show how recommendations match those preferences (Millecamp
et al., 2019). (b) Learners can follow or override recommended coding exercises
by using visualised information about how far they have advanced for different
topics and how likely they are to solve exercises correctly (Barria-Pineda, 2020;
Barria-Pineda and Brusilovsky, 2019; Barria-Pineda et al., 2018).

Part of the design challenge is how strongly visualisations should be
integrated with control over the AI model. There are three integration
levels (Turkay et al., 2014). On the first level, visualisations simply present
the model outcomes, typically in a static way or with limited interaction
possibilities. Thus, you have no control over the model. On the second
level, you can modify parameters or the data that the algorithm is using to
train the model and the resulting new outcomes are then visualised. The
integration is still “semi-interactive,” however, because you don’t know the
model’s inner workings and are restricted to changing certain parameters.
Finally, on the third level, the model and visualisation are tightly linked: the
model can be steered interactively through the visualisation and optionally
the model’s inner workings are visualised.
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2.8 How XAl Can Be Evaluated

Section 2.3 mentioned that ‘explainability’ is ill-defined. Yet, Section 2.4 showed
that researchers nevertheless developed tons of algorithmic XAI techniques, and
Section 2.5 stressed how people make everything even more complicated. How do
researchers test whether explanations are actually any good? The inconvenient
truth is there is no consensus on one overall evaluation method (Vilone and
Longo, 2021; Zhou et al., 2021) because of the split between algorithm-centred
and human-centred approaches, and different evaluation goals. However,
generally speaking, there are three levels of evaluation: functionally-grounded,
human-grounded, and application-grounded evaluation (Doshi-Velez and Kim,
2017).

Algorithm-Centred Evaluation

Functionally-grounded evaluation doesn’t involve real people in experiments
and is therefore algorithm-centred. In this case, “explainability” is optimised
according to some formal metric that is supposed to approximate the explanation
quality (Doshi-Velez and Kim, 2017). Some widely used metrics are stability,
robustness, consistency, sparsity, discriminativeness, and computational
efficiency (Afchar et al., 2022). These metrics are intended as a way to
translate human wishes for explanations into mathematics. The advantage
of functionally-grounded evaluation is that experiments can be run anytime.
This is less cumbersome than experiments involving people and also allows
to run tests that would be unethical with real humans. For example, giving
bad explanations to some test participants and good explanations to others
can sometimes be unacceptable. The downside is of course that the chosen
metrics and their formal definition define the whole quality assessment and
don’t necessarily reflect what people think in reality.

Human-Centred Evaluation

Both human-grounded and application-grounded evaluation involve real people
in experiments and can assess many different human-centred concepts; for
example, overall goodness, satisfaction, understanding, curiosity, trust, reliance,
and task performance (Hoffman et al., 2019). Figure 2.13 shows how some
concepts are typical for particular user groups. For example, for Al novices,
it is common to evaluate explanations in terms of how satisfied people are
with them, how they affect people’s trust in the AI model, and how well they
foster understanding the AI model (for the latter, researchers also use the term
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“mental model” (Brachman et al., 2023; Johnson-Laird, 1983; Kulesza et al.,
2012, 2013)). These concepts can be measured with a variety of measurement
instruments, ranging from carefully constructed questionnaires (Madsen and
Gregor, 2000; O’Brien and Toms, 2010; Pu et al., 2011; Vereschak et al., 2021),
to interviews (Leech, 2002), to logging what people click on, look at, how
long they use the explanation, and so on (Cai et al., 2019). The difference
between human-grounded and application-grounded evaluation lies in where
the experiments take place.

In human-grounded evaluations, researchers assess the quality of explanations
based on how participants execute fixed tasks during an experiment in a lab
setting (Doshi-Velez and Kim, 2017). These tasks are simplifications of what
people might do in real-life applications. Some examples are: participants need
to repeatedly choose which explanation they prefer for given pairs (Lundberg
et al., 2022); they need to repeatedly guess the output of an AI model for
given inputs while seeing an explanation so researchers can assess how well
participants understand the explanation (Poursabzi-Sangdeh et al., 2021; Yin
et al., 2019); and they need to solve problems or answer questions under different
explanation types or formats so researchers can compare them (Bertrand et al.,
2023; Bove et al., 2022; Cheng et al., 2019; Gutiérrez et al., 2019b; Szymanski
et al., 2021; Wang and Yin, 2021; Yang et al., 2020a).

In application-grounded evaluations, participants use an Al system with
explanations in real application settings (Doshi-Velez and Kim, 2017). For
example, doctors might use the explanations during real consultations with
patients, or children might be using them at school to better understand why an
AT system is recommending specific exercises. The general idea of this kind of
evaluation is that it is best to assess the ‘goodness’ of explanations directly and in
the real applications they were meant for. A big advantage is that explanations
can be evaluated from different angles. For example, what explanation types
are best suited in specific domains (Afchar et al., 2022). A disadvantage is that
such experiments must be carefully planned and executed because many factors
may affect the results, making it hard to single out the main effects.



Chapter 3

Thesis Overview

The previous chapter gave a sense of what topics my thesis is covering. Hopefully,
you realised how complex it is to explain Al outcomes to humans. As a result,
many challenges remain open. Section 3.1 summarises those that inspired
the research goals and research questions in this thesis (Section 3.2). Then,
Section 3.3 presents the overall human-centred methods we followed to work
towards realising those research goals and answering our research questions.
The actual research is spread over Chapters 4 to 8. As it might be hard to keep
an overview, Section 3.4 clarifies how the rest of this thesis is organised.

3.1 Open Research Challenges

Chapter 2 has introduced XAI, together with many explainability-related
concepts and adjacent research fields such as information visualisation, but has
only touched upon some of the most pressing research challenges. Even though
Chapters 4 to 8 will each start with an in-depth overview of the state-of-the-art
and open problems, this section gives a broader view of what lies ahead.

How to Design and Evaluate Explanations With People?

The algorithmic XAI community has developed many techniques to give
insights into the reasoning process of AI models (Adadi and Berrada, 2018;
Barredo Arrieta et al., 2020; Guidotti et al., 2019b; Montavon et al., 2018;
Stiglic et al., 2020). However, it is unclear whether these explanation techniques

33
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meet the insights required by different user groups across application domains
and contexts (Mohseni et al., 2021). Furthermore, although it is often claimed
that these techniques improve people’s understanding of and appropriately trust
in AT models, the body of experimental research that backs this up is limited.
In general, researchers seem to mainly rely on their intuition of what ‘good’
explanations are and there is little consensus on how to evaluate them (Doshi-
Velez and Kim, 2017). XAI studies with actual people, real-world data, and
functional complex models are required (Abdul et al., 2018; Adadi and Berrada,
2018; Gedikli et al., 2014) to investigate how people are affected by explanations,
for example in terms of understanding the underlying Al model, trusting it, or
feeling satisfied with the explanation. The case of trust is an interesting one,
because although transparency is often thought to engender trust, there is little
conceptually rich empirical work confirming this (Ananny and Crawford, 2018).
Furthermore, trust is a slippery concept because it evolves (Holliday et al., 2016;
Nourani et al., 2020), is subject to many factors (Hoff and Bashir, 2015), and
can be detrimental when ill-calibrated (Han and Schulz, 2020).

How to Tailor Interactive Visual Explanations?

Information visualisation lies naturally close to XAl since visualisation-supported
explanations can effectively communicate complex information. Visual analytics,
for example, is a useful technique for data and Al experts to analyse how Al
models behave and steer that behaviour accordingly. However, the advanced
control possibilities and the typical complex visualisations in visual analytics
systems can be overwhelming and do not necessarily align with non-researchers’
needs (Kwon et al., 2019). Therefore, an open question is whether design
lessons from visual analytics can be transferred to Al novices. Most current
visual explanations are namely static (Abdul et al., 2018), even though Al
novices might also need to interact with AI systems through visualisations to
incorporate their domain knowledge, communicate preferences, or iteratively
gain more insights. In this context, designers of explanation interfaces need to
make several trade-offs between many desirable explainability goals, such as
transparency, scrutability, trust, effectiveness, persuasiveness, efficiency, and
satisfaction (Kulesza et al., 2013; Tintarev and Masthoff, 2007b, 2011, 2012). For
example, there is a trade-off between effectiveness and efficiency: explanations
that present detailed information to help people make good decisions do not
necessarily help them make those decisions faster (Tintarev and Masthoff, 2011).
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What Are Interesting Application Domains?

To verify whether experimental findings generalise to different contexts, study
results should be compared across application domains. This thesis will focus on
three domains which have common as well as unique explainability challenges:
healthcare, agrifood, and education.

Healthcare. Attempting to further improve human health, healthcare and
biomedicine are increasingly collecting large amounts of biological and clinical
data in the form of electronic health records, DNA sequence data, imaging, and
sensor data, which are then analysed with AT technologies (Litjens et al., 2017;
Luo et al., 2016; Miotto et al., 2018; Yu et al., 2018). For example, ‘big data’
and Al are being used in bioinformatics to study genome-wide associations of
diseases, in clinical informatics to increase care for patients (Carriere et al.,
2021), in imaging informatics to more efficiently analyse medical imaging (Lee
et al., 2021; Li et al., 2007; Liu et al., 2019), and in public health informatics
to predict and monitor infectious disease outbreaks (Kopitar et al., 2020; Luo
et al., 2016; Stiglic et al., 2018; Viani et al., 2021). However, the black-box
nature of complex Al models hampers their adoption in real practice and causal
inference (Tu, 1996). While some researchers question whether AI should be
held to a higher explanatory standard than physicians (Wang et al., 2020) or
hold trust above transparency (Feldman et al., 2019), the general consensus
seems that healthcare is in high need of explainable AT models (Ahmad et al.,
2018; Holzinger et al., 2019; Stiglic et al., 2020; Vellido, 2020). One reason for
this is that medical experts not only have to convince themselves of Al outcomes’
validity, but also their patients, who might distrust them if they base their
judgement on unexplainable model outcomes (Miotto et al., 2018; Vellido, 2020).
Another reason is that healthcare is subject to many medicolegal and ethical
requirements because in the extreme case, lives are at stake (Ahmad et al.,
2018). Furthermore, medical experts require tools to conduct Al-supported data
analysis and need to be integrated more in their design (Vellido, 2020). Finally,
it is an open question how model outcomes are best presented to different
healthcare stakeholders (Bonnett et al., 2019). Overall, these challenges make
healthcare a particularly interesting field to study XAI and visual analytics
techniques (Caban and Gotz, 2015; Hu et al., 2016; Preim and Lawonn, 2020;
Simpao et al., 2014; West et al., 2015; Wu et al., 2019). There is an especial
opening for human-centred research because clinical decision-support systems
generally lack explanations which are tailored to clinicians’ needs (Antoniadi
et al., 2021).
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Agrifood. Al and ‘big data’ are also on the rise in agrifood (Kamilaris et al.,
2017), leading to promising research directions such as Agrifood 4.0 (Lezoche
et al., 2020), precision agriculture (Cisternas et al., 2020; Linaza et al., 2021;
Wachowiak et al., 2017), and smart farming (Ayoub Shaikh et al., 2022; Moysiadis
et al., 2021; Wolfert et al., 2017). Example applications include precisely
monitoring crop growth (Cisternas et al., 2020; Lindblom et al., 2017) and
optimising irrigation (Gil et al., 2021; Kamienski et al., 2018). To process
large amounts of data and interact with AI models, agrifood stakeholders
increasingly need decision support systems (Zhai et al., 2020). However, even
though researchers have proposed many prototypical systems (Gutiérrez et al.,
2019a; Zhai et al., 2020), their uptake remains limited so far (McCown, 2002).
Possible reasons for this are: current decision support systems lack usability,
uncertainty representations, and visualisations; they do not meet end users’
needs; and end users often distrust their black-box underlying AI models (Parker,
1999; Parker and Campion, 1997; Rose et al., 2016; Zhai et al., 2020). These
challenges could be tackled by combining techniques from XAI, visual analytics,
and human-centred design (Lindblom et al., 2017; Parker and Sinclair, 2001;
Rose et al., 2017).

Education. The histories of AI and education have always been deeply
intertwined (Doroudi, 2022), but especially in recent years, education is
embracing technology-enhanced learning for personalised learning (Verbert
et al., 2012) and learning is shifting away from traditional classrooms to
e-learning environments (Salau et al., 2022). These evolutions make large-
scale data collection possible, which in turn inspires learning analytics to
better understand and support learners based on data (Bodily et al., 2018b).
Furthermore, it allows increasing adoption of Al technologies for recommending
learning materials (Drachsler et al., 2015; Khanal et al., 2020; Salau et al.,
2022; Wu et al., 2020), assessing learners’ mastery level (Galici et al., 2023;
Torkamaan and Ziegler, 2022), creating educational content (Bitew et al., 2022;
Khosravi et al., 2023; Kurdi et al., 2020; Ni et al., 2022), evaluating the quality
of learning materials (Conijn et al., 2023), and so on. Similar to other domains,
calls for XAT and control mechanisms are emerging in the field (Khosravi et al.,
2022). Interestingly, education has a long tradition in both aspects. First, to
provide transparency, education has long been studying open learner models,
which show learners what the system knows about them (Bull, 2020; Bull and
Kay, 2007; Bull and McKay, 2004; Rahdari et al., 2020). Second, to foster
metacognitive skills such as self-knowledge and reflection, learners have been
given control over all learning aspects, including their learner model, the way
learning materials are being selected and presented, and learning materials’
difficulty (Brusilovsky, 2023; Bull and Pain, 1995; Kay, 2001; Mabbott and Bull,
2006; Papousek and Peldnek, 2017). Yet, research typically doesn’t include
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needs studies of end users (Bodily et al., 2018a) and there is a lack of research
on control mechanisms for selecting learning materials (Brusilovsky, 2023).
Addressing these challenges is especially hard for education, because learners
might not always be ready to control or collaborate with Al due to insufficient
knowledge (Brusilovsky, 2023).

3.2 Research Goals and Research Questions

Our research focuses on designing, implementing, and evaluating visualisation-
based explanations for systems that integrate AI models such as prediction
models and recommendation algorithms. We follow a human-centred approach
and thus tailor our explanation interfaces to specific target audiences and
application domains. Some of our research objectives are the following:

O1. Evaluate visual explanations in healthcare, agrifood, and education, for
example in terms of their ability to foster appropriate trust in AI models
and understanding their outcomes;

0O2. Study the trade-offs between completeness and complexity for explanation
interfaces during human-centred design processes;

03. Design interaction techniques that allow people to incorporate their domain
knowledge into Al systems.

These objectives are complemented by the following broad research questions:

RQ1. How can visual explanations tailored to a target audience and application
domain make AI models more transparent?

RQ2. How can people control Al models with additional feedback, supported
by interactive visual explanations?

RQ3. How do visual explanations and control affect people’s perceptions of Al
systems in terms of, for example, appropriate trust and understanding
their outcomes?

Given the focus on visualisations and human perceptions, the AI models we
implemented in this thesis are not optimised in terms of performance and are
less advanced than, for example, the neural networks introduced in Section 2.1.
Specifically, Chapter 5 uses a linear regression model and Chapters 6 to 8 use
recommendation algorithms based on an Elo rating system.
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3.3 Overall Methods

To tackle the research goals and questions, we applied various research methods
that each have their own intricacies and learning curves.

First, we conducted a systematic review of the literature (Grant and Booth,
2009) to get an overview of the existing research on visual analytics in the
scope of XAI. This required carefully constructing a search query (Rethlefsen
et al., 2014), tediously screening thousands of papers according to the PRISMA
guidelines (Moher et al., 2009), coding the collected papers in a huge Excel
spreadsheet, synthesising the coded papers into a coherent story, and finally
making recommendations for future research (Bakken, 2019).

Second, we designed explanation interfaces following a human-centred design
approach (Abras et al., 2004) to ensure people in our target audiences can use
our explanation interfaces as intended and can learn how to use them with
little effort. Concretely, we collected target-users’ needs and iterated over low-
fidelity prototypes during multiple focus groups (Hennink, 2014) and think-aloud
studies (Abras et al., 2004). This iterative approach implied we often needed to
start over designing parts or even entire interfaces.

Third, we conducted in-depth semi-structured interviews (Leech, 2002) and
randomised controlled experiments (Glennerster and Takavarasha, 2013) to
rigorously evaluate our explanation interfaces. In these studies, we collected and
analysed data both quantitatively and qualitatively, typically combining both to
benefit from both their advantages. Quantitative data, such as log data on how
people use our systems and self-reported Likert-type questionnaires based on
validated scales, were analysed statistically with parametric and non-parametric
approaches (Creswell and Creswell, 2017; Everitt and Hothorn, 2011; Siegel
and Castellan, 1988; Snedecor and Cochran, 1969). The most challenging parts
here are wrangling the collected data into manageable formats for analysis, and
selecting the appropriate statistical methods depending on the data. Qualitative
data, such as interview transcriptions and written responses to open questions,
were analysed thematically (Braun and Clarke, 2012; Braun et al., 2018). This
analysis was arguably the most energy-consuming as I first had to manually
transcribe dozens of hours of interviews, code the resulting dozens of pages of
text, and then bring all codes together into a coherent story.
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3.4 Organisation of the Text

During my PhD, I contributed to 14 papers in total (see Figure 3.1). The
rest of this thesis only presents some of them, divided into four parts. The
first three each investigate a different approach towards explainability: Part I
discusses visual analytics, Part II addresses visualisation-supported justification,
and Part III delves into visualisation-supported control. Part IV presents the
overall conclusions. The research in Chapters 4 to 8 has been published in
scientific journals and conferences or will be submitted there soon. This has
two implications.

First, while I am the principal author of the chapters presented in this thesis,
the research is the result of close collaboration with multiple colleagues. To
acknowledge their contributions, I will use “we” throughout the chapters unless
I’'m making personal statements. (You might have noticed I already started
doing that in this chapter.)

Second, the writing style is an academic one. Phrasings are therefore quite
dense: a lot of information needs to be communicated within limited space
because publication venues enforce length restrictions and readers have limited
attention spans. In addition, it is regularly assumed that readers are familiar
with related research and jargon. If you are inexperienced with scientific texts,
the upcoming chapters may therefore be more challenging to understand. Still, T
invite you to give it a try. If the text really gives you the shivers, it’s okay to just
focus on the pictures and background stories. Hopefully, they prevent you from
running away before you get to the overall conclusions and acknowledgements.
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K., and Stiglic, G. (2023). Self-Care Oriented Smartphone Apps for Type 2 Diabetes:
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Trust. Submitted to CHI 2024.
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Figure 3.1: Overview of the 14 publications I contributed to during my PhD.
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Chapter 4 presents a systematic review on existing visual
analytics systems in healthcare. This chapter was published
as a journal paper (Ooge et al., 2022b):

Ooge, J., Stiglic, G., and Verbert, K. (2022). Eu-
plaining artificial intelligence with visual analytics in
healthcare. WIREs Data Mining and Knowledge Discovery,

12(1):€1427
As the first author, I conducted the whole review process,
classified and analysed the collected papers, wrote the paper,
and collected unpublished screenshots of the visual analytics
systems. The methods, results, and text were discussed with
both co-authors.

Chapter 5 presents an uncertainty-aware visual analytics
system for agrifood. This chapter builds on a pilot study
published as a workshop paper (Ooge and Verbert, 2021) and
was published as a journal paper (Ooge and Verbert, 2022):

Ooge, J. and Verbert, K. (2021). Trust in Prediction
Models: A Mized-Methods Pilot Study on the Impact of
Domain Ezpertise. In 2021 IEEE Workshop on TRust and
EXpertise in Visual Analytics (TREX), pages 8-13, New
Orleans, LA, USA. IEEE

Ooge, J. and Verbert, K. (2022). Visually Ezplaining
Uncertain Price Predictions in Agrifood: A User-Centred
Case-Study. Agriculture, 12(7):102/

As the first author of both papers, I designed and
implemented the visual anaytics system, conducted all
interviews, transcribed and analysed them, and wrote the
papers. I also presented the first paper during the
TREX 2021 workshop. The methods, results, and text were
discussed with Katrien Verbert. Finally, the chapter
contributed to the following paper:

Htun, N.-N., Rojo, D., Ooge, J., De Croon, R., Kasimati,

A., and Verbert, K. (2022). Developing Visual-Assisted

Decision Support Systems across Diverse Agricultural Use
Cases. Agriculture, 12(7):1027
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Chapter 4

Explaining Al with Visual
Analytics in Healthcare

To make predictions and explore large datasets, healthcare is increasingly
applying advanced algorithms like artificial intelligence. However, to make
well-considered and trustworthy decisions, healthcare professionals require ways
to gain insights in these algorithms’ outputs. One approach is visual analytics,
which integrates humans in decision-making through visualisations that facilitate
interaction with algorithms. Although many visual analytics systems have been
developed for healthcare, a clear overview of their explanation techniques is
lacking. Therefore, we review 71 visual analytics systems for healthcare, and
analyse how they explain advanced algorithms through visualisation, interaction,
shepherding, and direct explanation. Based on our analysis, we outline research
opportunities and challenges to further guide the exciting rapprochement of
visual analytics and healthcare.

4.1 Introduction

Healthcare professionals are increasingly acquiring vast amounts of electronic
health records, analysing these data with advanced algorithms like artificial
intelligence (AI), and basing decisions on the algorithmic outcomes (Miotto
et al., 2018). Countless examples illustrate the rise of Al in healthcare: Stiglic
et al. (2018) and Kopitar et al. (2020) built predictive models for chronic
diseases, Liu et al. (2019) detected diseases from medical imaging with deep
learning, Viani et al. (2021) and Carriere et al. (2021) applied natural language
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processing to extract disease onset from textual health records and to assist
with rehabilitation assessment and treatment, etc.

The shift towards “big data” and Al comes with tremendous opportunities
for healthcare, but also entails important challenges (Ahmad et al., 2018). A
prominent challenge is that well-performing techniques such as deep learning
generally yield “black box” models: understanding how they establish outputs is
hard or even infeasible. Many healthcare stakeholders deem it unacceptable to
fully rely on “black boxes”, and call for explaining algorithmic decision processes.
This call is further reinforced by medico-legal and ethical requirements, and
regulations on Al use like the European GDPR, which endorses a right to
explanation (Goodman and Flaxman, 2017).

Constructing explanations for Al models is the holy grail in explainable artificial
intelligence (XAI), a melting pot of research fields like cognitive psychology,
human-computer interaction, and computer science (Hind, 2019). A promising
approach for XAT is visual analytics. This subfield of information visualisation
fosters analytical reasoning through interactive visual interfaces (Cui, 2019;
Ham, 2010; Keim et al., 2008): by visually exploring data and iteratively refining
hypotheses, users can discover complex relations in large datasets, detect biases,
and get insights in how algorithms work (for example through shepherding,
i.e. controlling the algorithmic process).

Many visual analytics systems have been developed for healthcare, but a clear
overview of their explanation techniques is lacking. Therefore, we review
visual analytics systems that incorporate advanced algorithms, and that were
either specifically designed for a healthcare context, or evaluated therein. Our
contribution is twofold. First, we showcase the potential of visual analytics for
explaining algorithms according to four perspectives, enclosed in our research
questions:

« RQ1. How do visual analytics systems visualise the outcomes of advanced
algorithms?

« RQ2. Which interactions do visual analytics systems support?

« RQ3. How do visual analytics systems support shepherding of advanced
algorithms?

e RQ4. How can visual analytics systems explain advanced algorithms
directly?

Second, we analyse main trends, opportunities and remaining challenges for
visual analytics in healthcare. Along the way, we report which advanced
algorithms are incorporated in visual analytics systems for healthcare, and for
which purposes they are used. We present our findings with an interdisciplinary
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Figure 4.1: Healthcare increasingly adopts advanced algorithms, and often
requires explanations for the algorithmic process. Visual analytics can provide
insights in algorithms through visualisation, interaction, shepherding and
direct explanations. Thus, visual analytics holds important opportunities
for healthcare.

audience in mind, and thus hope to further strengthen the bridge between visual
analytics, Al and healthcare.

4.2 Background and Related Work

Our review touches upon healthcare, advanced algorithms, explainable AI, and
visual analytics. This section presents relevant work in the intersection of these
domains.

4.2.1 Explainable Artificial Intelligence

XATI encompasses a huge collection of intertwined topics, including trust, fairness,
bias, causality, accountability, privacy and reasoning (Abdul et al., 2018). One
side-effect of this rich mix is that researchers have not yet agreed upon a rigorous
definition for explainability, and often interchange it with interpretability,
understandability, or intelligibility (Gilpin et al., 2018; Lipton, 2018).
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Human-computer interaction recognises that the meaning of explainability and
its requirements depend on the target user and application context. Mohseni
et al. (2021) classified target users into AI novices, data experts, and Al
experts, each needing unique design goals and evaluation measures. Wang et al.
(2020) and Ahmad et al. (2018) pointed out that the importance of explanations
depends on the healthcare application: they are crucial when care is affected, but
less pressing for treatment cost prediction. To determine a suitable explanation
level, Vellido (2020) argued to integrate healthcare experts in the design of data
analysis interpretation strategies.

Even though explainability lacks a formal definition, the AI community has
developed many explanation techniques for AT models (Adadi and Berrada,
2018). Guidotti et al. (2019b) categorised these techniques according to how
they open the “black box” problem: by explaining the model itself, by explaining
the outcomes, or by inspecting the model. Stiglic et al. (2018) and Du et al.
(2019) categorised explanation techniques by scale (local vs global) and type
(model-specific vs model-agnostic): local explanations focus on a single instance,
whereas global explanations try to explain the entire model; model-specific
explanations are only applicable for particular models (e.g., deep learning
models (Montavon et al., 2018)), whereas model-agnostic explanations can
explain any model (Ribeiro et al., 2016).

4.2.2 \Visual Analytics for Explainable Artificial Intelligence

Many authors have surveyed visual analytics systems in the scope of AI. Some
surveys mainly focus on the machine learning aspect. For example, Liu et al.
(2017) classified visual analytics systems by whether they are intended to
understand, diagnose or refine machine learning models; Endert et al. (2017)
considered the machine learning type and the interaction intent. Other surveys
rather focus on the visualisation aspect. For example, Lu et al. (2017) categorised
predictive visual analytics systems based on their interaction methods and
prediction tasks; Hohman et al. (2019b) discussed the why, who, what, how,
when, and where of visualising deep learning models. Chatzimparmpas et al.
(2020a) covered both machine learning and visualisation aspects in a review on
enhancing trust with interactive visualisations: their fine-grained classification
covers interaction type, machine learning model, and trust level.

4.2.3 Visual Analytics in Healthcare

Ever since visual analytics emerged, healthcare has been recognised as one of
its most promising application areas (Keim et al., 2008; Thomas and Kielman,
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Table 4.1: Query used for paper selection. Categories were combined with an
AND operator.

Category Keywords

algorithm ai OR algorithm® OR artificial intelligence OR automated OR big data
OR data mining OR deep learning OR machine learning OR predict*

analytics analytics OR data analy* OR decision support OR electronic health
records

healthcare  *medic* OR bioinformatics OR, clinic* OR health*

interaction explor* OR interact*

visualisation dashboard OR graphic* OR interface OR visual*

2009) because of the many opportunities for clinicians, patients, researchers, and
other healthcare stakeholders (Caban and Gotz, 2015). The fruitful interplay
between healthcare, medical visualisation, and visual analytics produced an
extensive jargon, including visual intelligent decision support systems (Ltifi and
Ayed, 2016), clinical informatics (Simpao et al., 2014), and health informatics
(Wu et al., 2019).

Despite the diverging terminology, a lot of interesting work has been presented in
different healthcare areas, for example population health services (Chishtie et al.,
2020), prevention of disease outbreaks (Preim and Lawonn, 2020), and cancer-
related genomics (Qu et al., 2019). In biomedics, Sturm et al. (2015) categorised
existing work on interactivity level vs analysis type and visualisation technique,
and Turkay et al. (2014) classified visual analysis tools by their analytical task
and integration of computational methods. Finally, Rostamzadeh et al. (2020)
and West et al. (2015) reviewed interactive visualisations of electronic health
records, and Wang et al. (2011) presented case studies and design guidelines
based on their experiences with Lifelines2.

To conclude, a rich set of surveys highlights the importance of explaining machine
learning. However, the general surveys on visual analytics in Section 4.2.2 are
not framed in a healthcare context and do not discuss its specific requirements.
In contrast, the reviews in Section 4.2.3 are healthcare-oriented, but do not focus
on explanations or only cover a specific healthcare subdomain. To shed light
on the intersection of healthcare, visual analytics and explanation techniques,
we review visual analytics systems for healthcare that facilitate algorithmic
explainability. We also extend the scope from machine learning to advanced
algorithms in general.
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4.3 Paper Collection and Classification Process

Starting from the key reviews in Section 4.2, we iteratively compiled the search
query in Table 4.1 to target interactive visualisations that were specifically
developed for or applied in a healthcare context, and that involve at least one
advanced algorithm. Our query also considers diverging terminology for similar
concepts: for example, “decision support systems” in healthcare can fit with
what the visualisation community considers as interactive visual dashboards.

In January 2021, the first author queried Scopus, and then screened 1908
matches based on their abstract (285 remaining) and full-text (83 remaining,
including 12 overview papers). We excluded papers that present fully static
or interaction-limited visualisations (i.e. first level of integration in (Turkay
et al., 2014)), solely discuss image processing outcomes, do not allow for data
analysis, present statistical or visualisation software, or do not involve advanced
algorithms. The latter condition excluded dashboards like LifeLines2 (Wang
et al., 2011). Finally, the first author classified all included papers in Tables 4.2
and 4.3, inspired by existing frameworks for activity types (Rostamzadeh et al.,
2020), algorithmic classes (Endert et al., 2017), interaction types (Yi et al.,
2007), and explanation techniques (Guidotti et al., 2019b; Mohseni et al., 2021).

Sections 4.4 to 4.7 present Tables 4.2 and 4.3 in detail. Each section treats one
technique to obtain insights in advanced algorithms: visualisation, interaction,
shepherding, or direct explanation.

4.4 Visualising Algorithmic Outcomes in Visual
Analytics

A first way to gain insights in advanced algorithms is to visualise their
outcomes. Based on the first two column groups in Table 4.2, we discuss
several visualisation approaches (cfr. RQ1) for distinct algorithmic families,
and uncover the healthcare activities for which visual analytics systems in our
sample are used.
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Table 4.2: Classification of 71 visual analytics systems in our sample according
to healthcare activity types, present algorithms, and interaction types.
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Table 4.2 — Continued from previous page
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Rostamzadeh et al. (2020) divided healthcare activities into
interpreting, predicting, and monitoring. [ Interpretation is the most frequently
supported activity in our sample (55/71). Thus, most visual analytics systems
are geared towards exposing patterns in data, and discovering relations among
features. Less common is ™ Prediction whereby outcomes are anticipated
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or hypotheses are formed based on the available data (16/71). Finally,
Monitoring is absent in our sample: no visual analytics systems help to
manage recurrent or chronic diseases.

The visual analytics systems in our sample incorporate a multitude
of algorithmic families. Clustering/similarity is the most common family (38/71):
its algorithms are mainly used for interpreting, which explains that activity’s
prevalence. M Clustering algorithms group similar data points, say similarly
nutritious meals (Feller et al., 2018) or genomes (Seo and Shneiderman, 2002).
Results from k-means and k-nearest neighbours are usually visualised in scatter
plots with dots coloured according to their cluster (e.g., (Ji et al., 2019b; Klemm
et al., 2014), Figure 4.2a), or in projection plots after dimension reduction, e.g.,
(Guo et al., 2020; Ji et al., 2017). To avoid dimension reduction, Abdullah et al.
(2020) and Kwon et al. (2018) (Figure 4.2a) use parallel sets: axes that represent
features are connected by ribbons to show the proportional distribution of
feature combinations for each cluster. Alternatively, Gotz et al. (2011) and Cao
et al. (2011) (Figure 4.4a) visualise clusters of patients as Voronoi treemaps,
where cells represent features of patients. Interestingly, L’Yi et al. (2015) apply
parallel sets to compare clustering algorithms. Two more clustering algorithms
are biclustering and hierarchical clustering. Santamaria et al. (2008) visualise
biclustered microarray data as a Venn diagram. Cluster hierarchies are typically
visualised as dendrograms next to a heat map matrix, e.g, (Farag et al., 2015;
Yu et al., 2017b) in Figure 4.2d. Other visualisations are: an expandable list
of cluster representatives (Raidou et al., 2016b), inductively grouped circles
(Behrisch et al., 2018), and a time line of clusters at a given hierarchy level
(Widanagamaachchi et al., 2017).

We classified B Similarity measures like cosine, Jaccard and Hellinger distance
together with clustering, because they are often used to group data. For example,
Borland et al. (2020) (Figure 4.5d) hierarchically aggregate similar events in
an icicle plot to track selection bias in patient cohorts; Barlowe et al. (2013)
(Figure 4.2b) rank protein flexibility plots by similarity to a target.

Next comes M Classical statistics (20/71), which illustrates that current systems
still heavily rely on non-machine learning algorithms. Classical statistics includes
three techniques. (1) Correlation analysis: cells in correlation matrices are
typically colour-coded to reveal patterns and outliers, e.g., (Males et al., 2020;
Song et al., 2017). (2) (Non)parametric hypothesis testing: Abbasloo et al.
(2019) and Jonsson et al. (2019, 2020) (Figure 4.3b) highlight brain regions
that significantly differ for people with and without a condition; Malik et al.
(2015) visualise patients that survived or died after certain event sequences as
back-to-back bar charts, and indicate significant differences. (3) Regression:
Males et al. (2020) (Figure 4.2¢) compare two groups’ colon morphology in
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Figure 4.2: Examples of visualising algorithmic outcomes. (a) Clustering
outcomes in a scatter plot and parallel coordinates (Kwon et al., 2018); (b) Plots
ranked according to similarity to the first one (Barlowe et al., 2013); (c) Classical
regression lines in scatter plots (Males et al., 2020); (d) Top: parallel coordinates
and projection plot with heat map after dimension reduction. Right: heat map
matrix and dendrogram of hierarchical clustering (Farag et al., 2015); (e) Results
of sequential pattern mining in a scatter plot (Gotz et al., 2014); (f) Anomalous
activities highlighted in several visualisations (Liao et al., 2017).

overlaid scatter plots and regression lines; Verma et al. (2017) predict adverse
drug reactions with logistic regression, and visualise the confidence as ribbon
width in a Sankey diagram.

The following techniques are more commonly associated with Al: Dimension
reduction (18/71), Data mining and Classification (both 11/71). M Dimension
reduction projects multidimensional data to 2D or 3D with principal component
analysis (PCA), singular value decomposition, multiple factor analysis, t-SNE,
UMAP, or self-organising maps. In our sample, PCA is the most popular
technique, for example for omics data analysis (Farag et al., 2015; Nguyen
et al., 2012) or feature extraction on bacteria’s infrared spectroscopy spectra (Ji
et al., 2019a). Reduced dimensions are typically visualised in a 2D scatter plot,
which can be augmented with a density heat map, or accompanied by a parallel
coordinates visualisation of the original data (Farag et al., 2015; Ji et al., 2019a)
(Figure 4.2d). Only (Nguyen et al., 2012, 2011) use 3D scatter plots.

B Data mining algorithms extract patterns from data. With sequential pattern
mining, Fang et al. (2017) highlight similarities in line graphs of health sensor
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data, Gotz et al. (2014) (Figure 4.2¢) query event sequences and correlate
them with positive and negative outcomes, Santamaria et al. (2019) highlight
nucleosome patterns in sequenced chromosomes, and Klimov et al. (2015)
identify risk factors for kidney damage in parallel coordinates. Furthermore,
Dixit et al. (2017) optimise care pathways with process mining, and Zhao et al.
(2017) mine association rules for cancer causes and visualise them in parallel
coordinates.

M Classification algorithms like random forest and k-nearest neighbours assign
data points to a class, for example to predict rupture risk of aneurysms (Spitz
et al., 2020). Their overall performance is typically visualised in a confusion
matrix, e.g., (Krause et al., 2018a), and data points’ classes are often indicated
with colours, e.g., (Herold et al., 2010; Nguyen et al., 2012, 2011).

The remaining five algorithmic families include specialised techniques. B Artificial
neural network mainly consists of recurrent neural networks with long short-
term memory (LSTM) to handle long-range temporal dependencies. M Feature
selection contains techniques like information gain, which identify the most
relevant features in a dataset. M Segmentation algorithms partition medical
images into multiple segments. M Anomaly detection identifies unusual data
points, for example anomalous activities in smart homes (Liao et al., 2017)
(Figure 4.2f). Finally, B Other contains algorithms like partial dependence,
epidemiological models, Bayesian networks and hidden Markov models, which
do not fit in any of the previous families.

Overall, algorithmic outcomes can be visualised in many typical and alternative
ways, depending on the algorithmic family and the desired insights. These
insights are in turn related to the healthcare activity which is most often
interpreting data, rather than predicting or monitoring.

4.5 Interaction in Visual Analytics

While static visualisations may already provide interesting insights in advanced
algorithms, adding interaction makes them more powerful as users can then
test hypotheses, focus on particular insights, or view information from different
angles. The group in Table 4.2 classifies our sample into seven
interaction types proposed by Yi et al. (2007) (cfr. RQ2). Select (58/71) and
Abstract/elaborate (50/71) are the most frequently supported types, whereas
Encode and Ezplore (both 19/71) the least. Most visual analytics systems
support multiple interactions and as Select co-occurs with all other interaction
types, we present those first. Note that Lu et al. (2017) introduced shepherding
as an interaction type, yet we discuss it separately in Section 4.6.
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Figure 4.3: Examples of interaction with visualisations. (a) Abstract or
elaborate information with zooming (Kumar et al., 2015); (b) Filter data with
sliders in parallel coordinates (Jonsson et al., 2019, 2020); (c) Reconfigure a
scatter plot by changing axes’ features, and connect a selected data point with
related points (Stolper et al., 2014); (d) Encode data differently by adding spikes
to points in a scatter plot, and brush-and-link (Hund et al., 2016); (e) Select
nodes in a scatter plot with lasso selection (Kwon et al., 2019).

Abstract/elaborate interactions show or hide details in four ways. (1) Tooltips
that pop up when hovering or clicking a visualisation can show raw data, e.g.,
(Malik et al., 2015; Xing et al., 2014), or additional visualisations, e.g., (Afzal
et al., 2011; Gotz et al., 2014). (2) Collapsing components removes visual clutter,
for example lines in line graphs (Afzal et al., 2011) or parallel coordinates (Huang
et al., 2019), identical rows in matrices (Dang et al., 2015), or similar points in
scatter plots (Kwon et al., 2018). Conversely, expanding components shows extra
information like individual lines instead of ribbons in parallel sets (Kwon et al.,
2018), subsequences of sequential health records (Malik et al., 2015), or groups
in icicle plots (Borland et al., 2020). (3) Zooming enlarges a visualisation, e.g.,
(Kumar et al., 2015; Males et al., 2020) (Figure 4.3a). An interesting zooming
variant is lensing, which enlarges a specific area and compresses the rest: Dang
et al. (2015) use it in a large matrix of protein-biomolecule reactions. (4) To
change the visualised level of a clustering hierarchy, Widanagamaachchi et al.
(2017) and Behrisch et al. (2018) provide a slider, and Seo and Shneiderman
(2002) a bar that can be dragged along a dendrogram.

Filter interactions allow to focus on insights of interest by setting conditions
on the data with check-boxes, radio buttons or sliders. Examples are: filtering
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Figure 4.4: Examples of interaction with visualisations. (a) Connect a hovered
cell to related cells with highlighting (Cao et al., 2011); (b) Explore 3D plots
with scrolling (Song et al., 2017); (c) Select data in a scatter plot and update
other visualisations (Raidou et al., 2016a).

network connections above a correlation threshold (Xing et al., 2014), filtering
results that are statistically significant (Jonsson et al., 2019, 2020) (Figure 4.3b),
and adjusting the range of attributes in parallel coordinates by brushing axes,
e.g., (Yu et al., 2017b), or manipulating sliders on the axes, e.g., (Jonsson et al.,
2019; Santamaria et al., 2008).

Reconfigure interactions change the spatial arrangement of data items in at
least three ways. (1) Sorting matrices, lists and tables can reveal patterns, e.g.,
(Dang et al., 2015), and anomalies like violations in diagnostic rules for breast
cancer (Kovalerchuk et al., 2012). (2) Changing attributes. Axes in scatter
plots can be configured with buttons or drop-down menus to represent different
attributes, e.g., (Abdullah et al., 2020; Krause et al., 2014; Stolper et al., 2014)
(Figure 4.3c). Checkboxes can change available attributes in parallel sets, e.g.,
(Abdullah et al., 2020), or line graphs, e.g., (Fang et al., 2017). (3) Repositioning
data points manually can reduce occlusion (L'Y1i et al., 2017; Verma et al., 2017),
and automatic repositioning according to a chosen similarity metric can group
similar data points (Brunker et al., 2019; Ji et al., 2019a).

Connect interactions highlight associations between data items, and are often
triggered by hovering. Hovering one part of a visualisation can highlight other
parts in the same visualisation, for example connected ribbons and sets in
parallel sets, e.g., (Abdullah et al., 2020), neighbours in a network (Brunker
et al., 2019; Li et al., 2020; L’Yi et al., 2017), or other features from the hovered
data point (Cao et al., 2011; Gotz et al., 2011) (Figure 4.4a). Hovering can also
highlight related entities across multiple visualisations, e.g., (Kakar et al., 2019;
Kumar et al., 2015).

Ezplore interactions bring new data subsets into view. 2D visualisations can
often be panned, e.g., (Afzal et al., 2011; Behrisch et al., 2018; L’Y1i et al., 2017).
In 3D, images can be rotated with sliders or buttons, e.g., (Abbasloo et al.,
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2019; Jonsson et al., 2019), or the y-direction can be explored by scrolling up
and down the x-z plane (Song et al., 2017) (Figure 4.4b). Other exploration
interactions are: picking different clustering results for visualisation (Kwon
et al., 2018), and drilling down a Bayesian network by clicking nodes (Miiller
et al., 2020).

Encode interactions alter the visual representation of data, which may concern
the overall visualisation or the colour encoding. First, some visual analytics
systems switch between entirely different visualisation types, e.g., (Behrisch et al.,
2018; Borland et al., 2020; Krause et al., 2014). Others extend a visualisation,
for example by adding colour-coded links to a similarity scatter plot (Brunker
et al., 2019), or spikes to dots in a scatter plot to represent all data dimensions
(Hund et al., 2016) (Figure 4.3d). Second, recolouring nodes in scatter plots or
networks can reveal similarity to a specific node (Ji et al., 2019b); association
strength with a particular entity (Xing et al., 2014); and cluster specifics like
compactness, size and distribution (Hund et al., 2016).

Select interactions mark data items, either manually through brushing, e.g.,
(Guo et al., 2018), lasso selection, e.g., (Kwon et al., 2019; Raidou et al., 2016a)
(Figure 4.3e), clicking on a legend (Guo et al., 2020), or pinning (Dingen et al.,
2019; Kakar et al., 2019); or automatically based on a chosen metric, e.g.,
(Stolper et al., 2014). Selected data are typically coloured prominently to
easily focus on them. For example, Herold et al. (2010) and Hinterberg et al.
(2015) respectively highlight cells on fluorescence micrographs and significant
phenotype-gene expression associations that match set thresholds.

Select often precedes other interactions, hence its prominence. Geurts et al.
(2015) compare the quality of several segmentation algorithms for selected
segments (Abstract/elaborate). Liao et al. (2017) only show selected items in a
radar map (Filter). Lamy and Tsopra (2019) reposition selected rainbow boxes,
and Nguyen et al. (2012, 2011) reposition points in a scatter plot by similarity to
a selected point (Reconfigure). Upon selecting multiple clustering results, Kwon
et al. (2018) convert nodes in a scatter plot into small pie charts that reflect to
which clusters the nodes belong in the different clusterings (Encode). Lastly,
selecting data points can connect them to related data (Stolper et al., 2014)
(Figure 4.3c), or update other visualisations, e.g., (Hund et al., 2016; Klemm
et al., 2014; Raidou et al., 2016a, 2015) (Figure 4.3d, Figure 4.4c, Connect).

To conclude, visual analytics systems support many interaction types that often
co-occur. These interactions facilitate insights in algorithmic outcomes, which
can in turn strengthen a user’s mental model of how an advanced algorithm
works.
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4.6 Shepherding Algorithms With Visual Analytics

So far, we have covered two methods to gain insights in advanced algorithms:
visualising their outcomes, and interacting with the visualisations. A special
interaction type is [l Shepherding: guiding or controlling the algorithmic process
to show algorithms’ behaviour under different settings (cfr. RQ3). Shepherding
bridges interactive visualisations and direct explanations, because it is an
example of what Mohseni et al. (2021) call “what-if explanations”. Table 4.2
shows that less than half (32/71) of the visual analytics systems in our sample
allows shepherding. This section groups those systems by their “level of
integration” (Turkay et al., 2014), which indicates how seamlessly they integrate
algorithms. Figure 4.5 shows that we found examples in the full spectrum
between level two (semi-interactive) and three (tight integration). Recall
that our review excluded level one systems (static visualisations or limited
interaction).

Visual analytics systems of integration level two can only modify parameters
or the data domain through menus or pop-up windows that obscure the
visualisation, e.g., (Brunker et al., 2019; Santamaria et al., 2019). An illustrative
example is (L'Y1i et al., 2017) (Figure 4.5a), where users can configure prediction
models for miRNA-mRNA interaction in a tab completely separate from the
visualisation. This approach hinders swift shepherding as users constantly need
to switch between configuration and visualisation.

To better integrate the algorithm configuration, visual analytics systems can fix
settings panels along the visualisation, or use pop-ups that minimally obscure
the visualisation. Through radio buttons, checkboxes, text fields or sliders,
users configure algorithms and rerun them by pressing a button. Examples
of modifiable aspects are: the parameter k in k-nearest neighbours clustering
(Spitz et al., 2020), the number of clusters (Ji et al., 2019b) (Figure 4.5b), the
applied algorithm (Riegler et al., 2016), the attributes for analysis (Abbasloo
et al., 2019; Dixit et al., 2017; Zhao et al., 2017), the query for pattern mining
(Gotz et al., 2014) (Figure 4.2e), and the feature weights that best distinguish
ill and healthy people (Moschonas et al., 2016).

Visual analytics systems with a settings panel can integrate algorithms more
tightly by rerunning them automatically after reconfiguration. For example,
Clark et al. (2017) rerun statistical tests for drug dose-response analysis after
altering features or the tests’ sidedness, Barlowe et al. (2013) rerank histograms
after modifying the number of bins, Feller et al. (2018) reapply clustering after
changing the number of clusters, Jeong et al. (2009) (Figure 4.5¢) and Ji et al.
(2017) change the contribution of dimensions in weighted PCA, and (Guo et al.,
2018) adjust the clustering level of medical event sequences to find meaningful
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Figure 4.5: Examples of shepherding, ordered by the level of integration in
the visual analytics system (Turkay et al., 2014). Semi-interactive examples are
situated left; the more to the right, the tighter the integration. (a) L'Yi et al.
(2017), (b) Ji et al. (2019b), (c) Jeong et al. (2009), (d) Borland et al. (2020),
(e) Dingen et al. (2019), (f) Li et al. (2012).

groupings and to understand their sensitivity.

To further integrate algorithms into visual analytics systems, visualisations
can themselves incorporate configuration functionalities like sliders to adjust
how aggressively sequential events are grouped (Borland et al., 2020; Gotz
et al., 2020) (Figure 4.5d), drop-down menus to configure dimension reduction
techniques (Abdullah et al., 2020; Kwon et al., 2018), and textfields to set the
maximal cohort size for cohort clustering (Huang et al., 2015).

Four visual analytics systems approach the highest integration level: they
automatically update algorithmic outcomes when input changes. First, Li et al.
(2020) show predicted risk of heart failure in a line chart, and add a line for
the updated risk after removing or adding drugs. (Kwon et al., 2019) is similar,
though its predictions need to be rerun manually. Next, Afzal et al. (2011)
compare diseases’ mortality and infection rates under different epidemiological
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Table 4.3: Classification of ten visual analytics systems with direct explanations
in our sample according to explanation type, explanation scale, explanator and
target user.
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parameters and measures. Last, Dingen et al. (2019) (Figure 4.5¢) allow to drag
variables into a dedicated panel to automatically generate logistic regression
models, and compare those models across groups.

Finally, visual analytics systems of the third integration level shepherd
algorithms through direct interaction with visualisations. First, Li et al. (2012)
(Figure 4.5f) allow to relocate and edit regions of interest in a 3D image of the
brain, after which the strength of connections between them is recomputed.
Second, Hund et al. (2016) (Figure 4.3d) project clustering results under different
distance measures, and rerun the algorithms when users filter the data. Third,
Gotz et al. (2011) and Cao et al. (2011) (Figure 4.4a) provide rich interactions
to refine clusters of patients: users can filter features, merge clusters with lasso
selection, drag patients out of clusters, and automatically remove patients far
from the cluster centre.
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4.7 Directly Explaining Algorithms With Visual
Analytics

Besides visualising and interacting with algorithmic outcomes, a final technique
to better understand advanced algorithms is to directly explain how they work
(cfr. RQ4). Our sample includes ten visual analytics systems with explicit
explanations: Table 4.3 classifies them by type, scale, explanator, and target
user.

All but one explanation techniques are model-specific. Some of them
can be applied to other algorithms of the same family (e.g., all feature selection
algorithms), but only Prospector (Krause et al., 2016) (Figure 4.6a) is fully
model-agnostic. Prospector shows how a prediction is affected when feature
values are perturbed with colour-coded sliders that correspond to partial
dependence plots.

Zooming in on explanations’ scale, our sample mainly contains local
explanations (6/10). Three systems explain artificial neural networks (ANNSs) on
a different scale. (1) Nauta et al. (2020) globally explain how an ANN predicts
coma outcome: for a fixed epoch and a fixed hidden layer, all input activations
are projected onto a scatter plot, and users can then select clusters to train a
decision tree that distinguishes them. (2) Alsaad et al. (2019) use contextual
decomposition to locally explain how a long short-term memory (LSTM)
network predicts asthma based on clinical visits: each visit’s contribution
to the prediction is visualised in a heat map matrix that also highlights the
most predictive subset of visits. (3) Hur et al. (2020) apply model inspection to
explain a LSTM that predicts heart failure or heart surgery based on medical
pathways: for the average or a specific patient, an attention heat map shows
the variable weights in all time steps of the LSTM.

Four visual analytics systems in our sample use feature
importance for explanations: they assign scores to features to indicate how
strongly they impact the algorithmic outcome. (1) Miiller et al. (2020) predict
suitable cancer treatments with a Bayesian network, and determine the global
and local relevance of evidence with sensitivity analysis. Users can also see the
impact of updating or adding evidence in donut charts. (2) To select features
that best predict diabetes, Krause et al. (2014) (Figure 4.6b) score feature
importance with information gain, Fisher score, odds ratio, and relative risk.
These four scores are computed in ten cross-validation folds, and visualised as
quadrants of a circular bar chart. (3) Krause et al. (2018a) predict hospital
admission with binary classifiers, and explain them with decision rules, which
consist of feature sets that change the prediction outcome when removed. Users
can inspect these decision rules in a matrix of data items (rows) and features
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(a) (b) (c)

Figure 4.6: Examples of direct explanations in visual analytics systems.
(a) Sliders show how perturbed inputs impact the prediction (Krause et al.,
2016); (b) Circular glyphs with quadrants of feature importance scores (Krause
et al., 2014); (c) Segmented mesh colour-coded by similar landmark movements
(von Landesberger et al., 2013).

(columns, ordered by gini feature importance). (4) After clustering, Kwon et al.
(2018) apply ANOVA to identify significant relationships between features and
clusters, and use the F-values as importance values to rank features.

Most of the collected explanation methods (8/10) are designed for both
data experts and Al experts. von Landesberger et al. (2013) (Figure 4.6¢)
specifically target Al experts, who can detect drawbacks of segmentation
algorithms through visualisations of landmark movements. Lamy and Tsopra
(2019) also explain through visualisation, which seems the only approach suitable
for AI novices: they visualise ANNs without hidden layers as rainbow boxes.
These boxes symbolise connections in the ANN, and their height equals the
weight of those connections.

4.8 Observations, Opportunities and Challenges

Our review investigated four methods to obtain insights in advanced algorithms:
(1) visualising their outcomes and (2) interacting with these visualisations,
(3) shepherding them, and (4) directly explaining them. These methods are
not always clearly separable as shepherding can be a kind of interaction with
visualisations, and visualisations can also act as direct explanations. Put
differently, there is a fine line between getting insights in algorithmic outcomes
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Figure 4.7: Opportunities and challenges for visual analytics, artificial
intelligence, and healthcare. Human-computer interaction can mediate the
dialogue between these three communities.

and in the inner logic of algorithms themselves. This section answers our
research questions, and positions them in the broader, multidisciplinary context
of Figure 4.7.

4.8.1 \Visualising Outcomes: Many Algorithm-Dependent
Possibilities

Section 4.4 showed that algorithmic outcomes can be visualised in many
ways (RQL), ranging from basic scatter plots to original custom glyphs.
Some visualisations often occur together with specific algorithms, for example
dendrograms with hierarchical clustering, and projection plots with dimension
reduction. This co-occurrence seems to hold in general: visualisation approaches
strongly depend on the algorithmic family and the healthcare activity. We
observed that visual analytics systems for a healthcare context mainly rely on
mainstream interpretative algorithms such as clustering, dimension reduction
and classical statistics, resulting in few visual analytics systems for predictive
activities, and even none for monitoring chronic diseases such as diabetes. On
the one hand, this suggests room for adopting more specialised state-of-the-art
Al techniques such as transformer neural networks, Bayesian networks, and
natural language processing. On the other hand, the absence of monitoring
systems in our sample suggests a gap for further research. This gap is related
to a second observation: most of the visual analytics systems in our sample



OBSERVATIONS, OPPORTUNITIES AND CHALLENGES 65

target healthcare professionals, but as technology increasingly facilitates self-
monitoring, laypeople are likely to become an important target group too.
Future studies could thus investigate how visual analytics may fit the needs of
laypeople.

4.8.2 Interacting With Visualisations: Sufficient or Too Much?

Section 4.5 demonstrated that existing visual analytics systems incorporate all
seven interaction types from Yi et al. (2007) (RQ2): Abstract/elaborate, Connect,
Encode, Explore, Filter, Reconfigure and Select. The frequent appearance of
Abstract/elaborate presumably originates from the widespread details-on-demand
mantra in information visualisation (Shneiderman, 2003). All interaction
types exist in different forms, and are often combined in highly interactive
visualisations. While this is encouraged to facilitate insights in algorithmic
outcomes, some developers of visual analytics systems in our sample, e.g., (Kwon
et al., 2019), intensively collaborated with healthcare professionals and note
that caution is needed: end-users are not always looking for highly exploratory,
information-heavy interfaces that are interesting from a visualisation perspective,
but are too complex for their needs. Instead, some healthcare contexts may
require visual analytics systems that act as fellow healthcare experts and point
out interesting cases in the data. Thus, tailoring the amount of interaction in
visual analytics systems is part of the broader challenge to involve end-users in
every stage of the design process and identify their needs. This may improve
user acceptance and enhance trust in the proposed system (Abdullah et al.,
2020).

4.8.3 Shepherding Algorithms: A Higher-Order Interaction

Section 4.6 showed that algorithms can be shepherded by tuning algorithmic
parameters or modifying input (RQ3). Visual analytics systems can integrate
shepherding along a continuum that ranges from separating shepherding and
visualisations to tightly connecting both. Despite its potential to provide what-
if explanations, optimise existing models, or build new meaningful models,
shepherding was relatively uncommon in our sample. This could be due to a
trade-off that rises when the amount of transparency and shepherding freedom is
determined: giving too much control to non-trained users can overwhelm them or
incur misleading outcomes resulting from overfit models. Blindly playing around
with parameters may be harmless for exploratory contexts such as clustering
similar documents (Ji et al., 2019b) or medical images (Riegler et al., 2016),
but can have severe consequences in delicate predictive contexts. Therefore, Al
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experts should inform healthcare professionals about the applicability, strengths
and weaknesses of Al models, and visual analytics developers should help in
training healthcare professionals to use their systems. User-studies in our
sample endorse the need for such training, e.g., (Cao et al., 2011; Gotz et al.,
2020; Kwon et al., 2021). Another possibility is to develop different versions of
visual analytics systems and only provide shepherding functionalities in specific
contexts.

4.8.4 Direct Explanations: Rare Yet Promising

Section 4.7 revealed two interesting observations about direct explana-
tions (RQ4). First, few examples were present in our sample, yet all of them
involved visualisations. Second, Al novices are so far often neglected. Although
directly explaining advanced algorithms to AI novices seems challenging, future
research could for example investigate whether conversational design and
example-based explanations give solace (Ribera and Lapedriza, 2019). In
that way, patients may better understand personalised health plans proposed
by their clinician, potentially by comparing their health measurements against
similar patients. Of course, Al experts remain an important target group as
well: direct explanations in interactive visual analytics systems can help them
explain existing black-box models, obtain information about the inner logic
of advanced algorithms, and design algorithms that are better interpretable.
Regarding the latter, collaborating with healthcare professionals is essential to
learn what interpretability means in their context.

4.9 Conclusion

XALI is extremely relevant in our current age of algorithms and massive data
collection, and visual analytics has proven to play an important role in the quest
for explainability. Healthcare has acknowledged the value of visual analytics in
many applications, but may not have taken enough advantage of this exciting
field yet (West et al., 2015). For example, Bonnett et al. (2019) showed that
risk prediction is still dominated by simple static visualisations like point score
systems and nomograms. In addition, our review suggests a lack of interactive
visual analytics systems for monitoring, and systems that target laypeople.

Our review also reveals that visual analytics holds many opportunities for XAI in
healthcare by providing insights in advanced algorithms through visualisation,
interaction, shepherding, and direct explanations. Yet, complex challenges
remain: many healthcare stakeholders are involved in the visual analytics
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process (Kolyshkina and Simoff, 2021), domain practices should be respected,
domain expertise is often required to correctly interpret algorithmic results, and
explanation techniques should be tailored to the application domain and target
users. These XAI challenges cannot be solved in isolation, so we encourage
the visual analytics, Al and healthcare communities to further reach out to
each other, and we invite the human-computer interaction community to help
mediating this fascinating interdisciplinary dialogue.
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I visited Gregor’s lab in Maribor (Slovenia) with Katrien and Robin and
presented a preliminary literature review on visual analytics and XAI for
healthcare, which became the foundation for this chapter. I remember everyone’s
enthusiasm and how I secretly felt like an absolute fraud who didn’t deserve the
warm welcome. After the research visit, Robin and I travelled to Graz (Austria),
where we spent several days walking for miles. One day, we climbed the
Schlossberg to visit the famous Uhrturm tower. Compared to the spectacular
view on the city, I found the Uhrturm slightly underwhelming, but I was
intrigued by how a nearby clock tower was trying to hide in plain sight. Never
thought I could feel like a tower.

Songs on repeat:

o Underdog by BANKS
o Alibi and the rest of the Goddess (Deluze) album by BANKS
e Doin’ Time by Lana Del Rey
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Clock tower in Graz — November 2019



In December 2019, Oscar gifted me The Art of Statistics: Learning from Data
by David Spiegelhalter during a Secret Santa dinner with the Augment lab in
which I worked. His kind words and everyone’s company made me feel accepted
by an incredible international team. I was happy and could not have wished
for a better team at the start of my PhD. Until today, Oscar’s book has a
prominent place in my living room, reminding me of that unforgettable evening.
Oh, and I loved the book, by the way. Read it.

Songs on repeat:

o Stroke and the rest of the III album by BANKS
o Gemini Feed and the rest of the The Altar album by BANKS
e Late Night Feelings by Mark Ronson and Lykke Li
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The Art of Statistics — October 2023



When I started collecting papers in November 2019, I was intimidated by the
vast amount of existing work and other meticulously executed systematic reviews.
Paralysed by the fear of missing relevant work and constructing a suboptimal
classification, I fled into working on other papers (Ooge et al., 2020; Ooge and
Verbert, 2021, 2022). In January 2021, I regained courage and screened about
2000 paper abstracts in a couple of days, after which I painstakingly started
to screen the full papers and classify them in a ginormous Excel sheet (118
columns). Driven by the rush to finish as many papers as possible each day,
I worked late hours at my studio desk with frontal view on the imec tower in
Heverlee. Every evening, I watched the tower light up, its office lights painting
abstract patterns in the night sky. I still wonder whether the office in the left
upper corner, typically lit until 3 am, was also housed by a crazy workaholic.

Songs on repeat:

o Love Hangover by Diana Ross
o FEverything i wanted by Billie Eilish
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imec tower — January 2021



In the spring of 2021, I was finishing the categorisation of papers and started
writing the actual review. Tired of staring at the imec tower and working from
home under the Covid restrictions, I started working outside. My favourite spot
was a bench in front of the Arenberg castle in Heverlee, next to what I baptised
the “frog pool.” T think the Hogwarts vibes that the castle was giving me made
me believe that something magical would bring together my categorisation and
notes into a coherent review. The croaking frogs in the deliciously warm sun
brought me into the perfect trance for making that magic happen. By June
2021, I had been writing while sneezing my brains out in the high grass and
doing my laundry at the laundry centre. But whenever I see Table 4.2, I can’t
help hearing “croak”s and “ribbit”s.

Songs on repeat:

e Technicolour by Montaigne
e Thunder by Catnapp
e Hello? by Clairo

76
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Chapter 5

Visually Explaining Uncertain
Price Predictions in Agrifood

The rise of ‘big data’ in agrifood has increased the need for decision support
systems that harvest the power of artificial intelligence. While many such
systems have been proposed, their uptake is limited, for example because
they often lack uncertainty representations and are rarely designed in a user-
centred way. We present a prototypical visual decision support system that
incorporates price prediction, uncertainty, and visual analytics techniques. We
evaluated our prototype with 10 participants who are active in different parts of
agrifood. Through semi-structured interviews and questionnaires, we collected
quantitative and qualitative data about four metrics: usability, usefulness and
needs, model understanding, and trust. Our results reveal that the first three
metrics can directly and indirectly affect appropriate trust, and that perception
differences exist between people with diverging experience levels in predictive
modelling. Overall, this suggests that user-centred approaches are key for
increasing uptake of visual decision support systems in agrifood.

5.1 Introduction

Under the impulse of success stories in other domains, artificial intelligence
and ‘big data’ are on the rise in agrifood (Kamilaris et al., 2017), leading to
promising research directions such as Agriculture 4.0 (Zhai et al., 2020) and the
broader Agrifood 4.0 (Lezoche et al., 2020), precision agriculture (Cisternas
et al., 2020; Linaza et al., 2021; Wachowiak et al., 2017), and smart
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farming (Ayoub Shaikh et al., 2022; Moysiadis et al., 2021; Wolfert et al., 2017).
While the adoption of such technologies is still modest in real-life agrifood
applications (Osinga et al., 2022), it is expected that the wide availability
of cloud computing and remote sensing (Navarro et al., 2020) will further
boost their spread (Liakos et al., 2018). To process the explosive amount of
information in this era of growing digitisation and to make data-grounded
decisions, agrifood stakeholders increasingly need the assistance of decision
support systems (DSSs) (Zhai et al., 2020) that facilitate learning and allow
to modify decision processes by integrating domain knowledge, rather than
systems that merely prescribe actions (McCown, 2002; Rojo et al., 2021).

Yet, even though the need for DSSs in agrifood has been acknowledged
for over two decades (McCown, 2002) and many prototypes have been
proposed (Gutiérrez et al., 2019a; Zhai et al., 2020), the uptake of these systems
has been limited so far. Parker (1999); Parker and Campion (1997), Zhai et al.
(2020), and Rose et al. (2016) discussed several reasons for this low uptake:
user interfaces of DSSs are not always user-friendly and lack visualisations,
DSSs are not necessarily relevant when they do not meet end users’ needs or
decision-making styles, outputs often miss uncertainty representations, and
end users often distrust DSSs with opaque underlying algorithms. In other
words, developers of DSSs for agrifood face important design challenges such as
increasing usability, guarding usefulness for end users, and raising appropriate
trust in underlying decision models.

Tackling these challenges requires human-centred approaches, which lie at
the core of human—computer interaction (HCI), an interdisciplinary field that
connects computer science, social sciences, and technology-applying domains
such as agrifood. Specifically, HCI studies how interfaces can be designed and
tailored to specific end users or application contexts to improve user experience,
for example (Carroll, 1997; Olson and Olson, 2003; Shneiderman et al., 2016).
Two subdomains of HCI specialise in visualising complex information and
explaining artificial intelligence, respectively. The first subdomain, visual
analytics, fosters analytical reasoning with visual dashboards that support
advanced interaction and visual exploration to discover hidden patterns in
data (Cui, 2019; Ham, 2010; Keim et al., 2008). The second subdomain,
explainable artificial intelligence (XAI), seeks techniques that give insights into
outcomes of artificial intelligence models, and studies interrelated topics such
as trust, fairness, bias, causality, accountability, privacy, and reasoning (Abdul
et al., 2018).

Visual analytics and XAI are relevant in agrifood because DSSs increasingly
include predictive models and benefit from visualising information. Yet, current
DSSs in agrifood often lack uncertainty representations and are rarely designed
in a user-centred way (Rose et al., 2017). To enable informed decision-making
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by different end users, researchers and practitioners have called for adopting
more user-centred and HCI practices in agrifood (Lindblom et al., 2017; Parker
and Sinclair, 2001; Rose et al., 2017).

We address this call by presenting a visual DSS that shows predicted food
product prices and uncertainty in the predictions. We evaluated our prototype
with 10 participants who are active in different parts of agrifood; collecting and
analysing both qualitative and quantitative data. In particular, we focused on
the following research questions:

RQ1 Usability : How user-friendly are the interaction functionalities and the
visualisation in our visual DSS?

RQ2 Usefulness and needs : How useful is our visual DSS and how does it
accommodate the needs of people active in agrifood?

RQ3 Model understanding : How does visualising uncertain predictions
affect people’s understanding of the prediction model underlying our visual
DSS?

RQ4 Trust : How does visualising uncertain predictions affect people’s trust
in the prediction model underlying our visual DSS?

Our research contribution consists of extensively evaluating our visual DSS
from two perspectives. First, considering our prototype as a product, we
assessed its usability and usefulness. Sections 5.4.1 and 5.4.2 show that
participants were generally very positive about our prototype’s usability (RQ1)
and expressed needs regarding control, comparison, and explanations (RQ2).
Second, considering our prototype as an XAI research tool, we dived deeper
into what affected participants’ understanding of and trust in the prediction
model underlying our DSS, and the relation with uncertainty visualisation.
Sections 5.4.3 and 5.4.4 show that participants’ understanding was affected on an
algorithmic and an outcome level (RQ3), and that trust in the prediction model
evolved under several factors (RQ4). In both perspectives, we considered the
impact of participants’ experience with predictive modelling, observing different
responses for different experience levels. Finally, we made our prototypical
visual DSS open-source so that the community can use it as a flexible basis for
more advanced dashboards tailored to specific contexts.

5.2 Background and Related Work

To contextualise our research, we first discuss visualisation for DSSs and
uncertainty representation. Then, we turn towards XAI and focus on trust.
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5.2.1 Visualisation for Decision Support Systems

Visualising information augments people’s abilities to get insights into complex
data and more effectively fulfil tasks that cannot be automated (Munzner,
2014). Presenting decision-making information visually has also been found
to make DSSs more user-friendly (Rose et al., 2016). Hence, it is no surprise
that DSSs often incorporate visualisations to facilitate decision-making across
application domains, e.g., healthcare (Botha et al., 2012; Rind, 2013; West
et al., 2015), learning analytics (Verbert et al., 2013; Vieira et al., 2018), finance
(Savikhin et al., 2011), and supply chain analytics (Basole et al., 2017; Khakpour
et al., 2021). In many of these domains, decision-making is supported by visual
analytics, which combines powerful visualisations with advanced interaction
techniques (Yi et al., 2007) and automated data analysis. This allows people to
iteratively generate and test hypotheses (Cui, 2019; Ham, 2010; Keim et al.,
2008, 2010). In healthcare, for example, visual analytics has been applied to
personalise medical treatments by analysing electronic health records, modelling
diseases and medical prediction, optimising care pathways, and so on (Hu et al.,
2016; Preim and Lawonn, 2020).

In agrifood, many visual DSSs have been proposed too, for example in dairy
farming (Di Silvestro et al., 2014), crop control (Armstrong and Nallan, 2016;
Machwitz et al., 2019), land assessment (Ochola and Kerkides, 2004), irrigation
management (Accorsi et al., 2014), and climate monitoring (Jarvis et al.,
2017). Yet, Gutiérrez et al. (2019a) found that most visual DSSs include
maps, contain a single visualisation, and are intended for farmers to manage
crops or assess land suitability. This suggests room for dashboards with multiple
visualisations in other application areas such as livestock monitoring and sales.
In addition, it suggests that current visual DSSs in agrifood are less advanced
than visual analytics approaches in terms of varied visualisations and interaction
possibilities.

5.2.2 Uncertainty Visualisation

Visual DSSs are subject to uncertainties in the data and uncertainties propagated
during the data processing, modelling, and visualisation (Sacha et al., 2016;
Skeels et al., 2010). These uncertainties can be visualised in many ways
(Demmans Epp and Bull, 2015; Spiegelhalter et al., 2011), but there are
two challenges. First, visualising uncertainty entails a trade-off: showing
too much uncertainty may overload or confuse people, whereas showing too
little uncertainty feigns accuracy and may mislead people (Sacha et al., 2016).
Second, some approaches for uncertainty visualisation may be clearer or less
misleading than others.
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Tackling these challenges is hard, which unfortunately often results in simply
omitting uncertainty (Franconeri et al., 2021; Hullman, 2020). This is currently
the case in agriculture: visual DSSs rarely consider uncertainty (Gutiérrez
et al., 2019a; Zhai et al., 2020). One exception, for example, is CropGIS
(Machwitz et al., 2019), which predicts produced biomass of maize under different
meteorological conditions. CropGIS then visualises the mean prediction in a
line chart, together with the minimum, maximum, and lo-confidence interval,
resembling a fan chart (Britton et al., 1998) with a single fan.

Researchers in information visualisation face the above two challenges by
studying the pros and cons of different uncertainty visualisation techniques.
For example, in the case of predicted time series, studies have shown that
(a) similar to fan charts, uncertainty intervals around a prediction line are best
distinguished with different opacity levels (Seipp et al., 2019); (b) fan charts are
a good compromise between accuracy and uncertainty (Gutiérrez et al., 2019b);
and (c) compared to ensemble charts, fan charts lead to higher acceptance of
predictions (Leffrang and Miiller, 2021).

5.2.3 Visualisation for Explainable Artificial Intelligence

As visual DSSs often incorporate complex algorithms, end users typically need
explanations to understand the algorithmic decision-making, appropriately trust
it, and detect potential biases (Gunning and Aha, 2019). There is no one-size-
fits-all explanation, however. Human-centred XAl researchers therefore study
how explanations can be effectively designed, considering factors such as the
application context (Dhanorkar et al., 2021; Suresh et al., 2021; Vellido, 2020),
human reasoning processes (Wang et al., 2019a), and end users’ goals (Mohseni
et al., 2021) or personal characteristics (Millecamp et al., 2019; Suresh et al.,
2021).

XAT and visual analytics largely intersect. Visualisations can namely serve
as explanations when people get visual insight in model outcomes and model
behaviour, actively interact with them, and steer the underlying algorithms
(Ooge et al., 2022b). Given the wide interest in visualisation for XAI, many
surveys have discussed the state-of-the-art in visual analytics for machine
learning (Endert et al., 2017; Liu et al., 2017), deep learning (Hohman et al.,
2019b), predictive modelling (Lu et al., 2017), and enhancing trust in machine
learning (Chatzimparmpas et al., 2020a) from different perspectives. A meta-
analysis of all these surveys confirmed the key role of visualisation in interpreting
machine learning (Chatzimparmpas et al., 2020b).
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5.2.4 Trust in Intelligent Systems

Many application domains call for increasing end users’ trust in algorithmic
decision-making of DSSs, including agrifood (Gutiérrez et al., 2019a; Rose et al.,
2016). In the scope of explaining black-box algorithms, trust is thus heavily
studied in XAI and visual analytics. However, trust is a slippery concept for
at least two reasons. First, there is no widely accepted definition for trust in
intelligent systems, although many definitions have been proposed (Jacovi et al.,
2021; Madsen and Gregor, 2000; Vereschak et al., 2021). Second, measuring
trust is very challenging because it evolves (Holliday et al., 2016; Nourani et al.,
2020; Ooge and Verbert, 2021) and is affected by many factors (Hoff and Bashir,
2015), for example, domain expertise (Nourani et al., 2020; Ooge and Verbert,
2021), visualised information and uncertainty (Mayr et al., 2019; Sacha et al.,
2016), model accuracy (Papenmeier et al., 2022; Yin et al., 2019), and level of
transparency (Kizilcec, 2016). In addition, there is growing consensus among
XAI researchers that optimising trust is not always desirable; rather, the stress
should lie on appropriate trust (Gunning and Aha, 2019) and trust calibration
(Han and Schulz, 2020; Solhaug et al., 2007). Some researchers even argue that
XAT research should move away from trust and focus on utility instead (Davis
et al., 2020).

5.3 Materials and Methods

This section presents how we conducted our user-centred study. We first describe
our visual DSS, study rationale, and overall study design. Then, we provide
more details on how we measured usability, trust, and experience with predictive
regression.

5.3.1 Visual Decision Support System

We developed a prototypical visual DSS for exploring product prices in various
countries. Besides visualising historical price evolutions, our system visualises
predicted future prices and the prediction model’s uncertainty. Rather than
building an advanced standalone interface with an accurate prediction model, we
aimed to create a simple and flexible proof of concept for which the underlying
dataset and prediction model could easily be replaced. To encourage future
adaptations, we built our prototype with the open-source Meteor, React, and
D3 frameworks, and made our code publicly available at https://github.com/
JeroenOoge/explaining-predictions-agrifood (accessed on 9 July 2022).


https://github.com/JeroenOoge/explaining-predictions-agrifood
https://github.com/JeroenOoge/explaining-predictions-agrifood
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In our proof of concept, the dataset contained price evolutions in European
countries over the past 3 decades for over 400 food products, including fruits,
vegetables, dairy, meat, and cereals. For each country separately, price
predictions were generated by fitting a third-degree polynomial to the country’s
past price data with linear regression and least-squares estimation, extrapolating
the fit for five years from the last known data point on. Uncertainty consisted
of 55-99%-prediction intervals with increments of 5%.

Figure 5.1 shows our dashboard. At the top, two search fields with dropdown
menus allow selecting a desired food product and countries available for that
product. In the middle, the price evolution for selected countries is visualised in
a line graph; each country is represented by a differently coloured full line. At
the bottom, five checkboxes allow to enable or disable visual components: the
first is enabled by default (Past data); the others are related to the prediction
outcome and model (Future prediction, Future uncertainty, Past fit, and Past
uncertainty). The future prediction and past fit are visualised as dashed
lines, and the prediction intervals as stacked bands (i.e., fans), where larger
intervals gradually become lighter. Finally, hovering over the chart and its
visual components shows details-on-demand in the form of a tooltip with the
exact price values or additional information.

5.3.2 Study Rationale

Adapting to economic uncertainty and predicting market fluctuations are
important challenges in Agrifood 4.0 (Zhai et al., 2020). To meet these challenges,
we framed our study in the context of predicting food product prices and built
upon an earlier pilot study (Ooge and Verbert, 2021), which showed that four
people experienced with predictive modelling had different trust evolutions
while using our visual DSS. To investigate the transferability of our preliminary
results, we recruited via email 10 end users who are active in agrifood or
finance. Then, we evaluated our prototypical visual DSS according to four
metrics: usability, usefulness and user needs, model understanding, and trust.
With the former two, we considered our prototype as a product: we wanted to
identify issues with the visualisation and the interaction possibilities and find
out whether our prototype matches participants’ needs. With the latter two, we
considered our prototype as an XAI research tool: we set out to discover how
the visual components in our visual DSS impact participants’ understanding
of the prediction model and what affects participants’ trust in the model. For
all four metrics, we also considered the effect of participants’ profession and
experience with predictive modelling.

In addition, we were interested in whether our visual DSS would allow
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Figure 5.1: Screenshots of our responsive visual DSS during interaction. Left:
selecting a food product in the upper left search field and getting details about
the price and date upon hovering over the line chart. Right: selecting countries
in the upper right search field and getting a description of the hovered fan (“In
80 out of 100 occasions, the product price lies between A and B”. where A and
B are the lower and upper bounds of the prediction interval at the indicated
date, respectively).

participants to identify the limitations of our simple prediction model. We
assumed that obvious prediction failures, for example, an almost flat regression
line for clearly periodic price evolutions, would not evoke lively discussions.
Therefore, we deliberately built our study around a specific case of butter prices
in France (data available for 1991-2011) and the Netherlands (data available
for 1991-2019), with two not too obvious shortcomings. First, the model fit the
past data rather poorly (high RMSEA). Second, even though France and the
Netherlands had historically similar prices, the prediction for France largely
diverged from the real data in the Netherlands, suggesting poor prediction
performance.

5.3.3 Study Design

In July—October 2020, we collected qualitative data on our four evaluation
metrics with online semi-structured interviews, quantitative data from Likert-
type questions on trust, and observational data on how participants interacted
with our visual DSS (participants shared their screen during the study).
Figure 5.2 shows the overall structure of our study.
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Figure 5.2: The flow of our study, including 5 phases: an introduction, four
scenarios with one country, four scenarios with two countries, a questionnaire,
and additional questions.

First, participants introduced themselves and we familiarised them with our
visual DSS: we explained how they could compare past butter prices in France
and the Netherlands and see details-on-demand in the visualisation, and we
introduced the price prediction functionality without revealing details about
the underlying prediction model.

Next, participants went through eight scenarios, enabling the Future prediction,
Future uncertainty, Past fit, and Past uncertainty checkboxes one by one,
first for a setting with one country (France; Scenarios 1-4) and then for
a setting with two countries (France and the Netherlands; Scenarios 5-8).
Figure 5.3 shows some representative screenshots. Each scenario consisted
of three phases: (1) we asked participants to explore the visualisation while
thinking out loud (Ezplore the new component in the visualisation. Explain what
you see. What grabs your attention?); (2) we asked them about their trust

and model understanding (Do you trust the prediction model? Do you
understand how the prediction model works? Which parts of the visualisation
made you say that?); and (3) we quantitatively measured their trust.

Finally, after completing all scenarios, participants reported their experience
with four concepts related to predictive modelling and answered additional
questions about model understanding and usefulness (Which combina-

tion(s) of components do you find most useful to get insights into the prediction
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(a) (b)

(c) (d)

Figure 5.3: Our visual DSS with different sets of enabled visual components.
(a) Scenario 1: the future prediction for France is visualised as a dashed
line. (b) Scenario 2: the future uncertainty for France is visualised as fans.
(c) Scenario 7: the past fit for France and the Netherlands is visualised as dashed
lines. (d) Scenario 8: the past uncertainty for France and the Netherlands is
visualised as fans.

model? Would you like to investigate or explore other things to get insights into
the prediction model? Would you use this visualisation for your job activities?).
In the post-study discussion, we asked participants how they experienced the
study and stressed that our prediction model was not meant for making real-life
decisions.

5.3.4 Measurement Instruments and Qualitative Analysis

To assess usability , we observed participants’ interactions with our visual
DSS and analysed their think-aloud feedback during exploration. As such, we
could study whether participants easily found the information they were looking
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for; understood filtering, clicking and hovering functionalities; and had further
suggestions. In contrast to Likert scales for overall usability (Bangor et al.,
2008; Brooke, 1996), this approach gives concrete insights into how, why, and
which parts of visualisations should be adapted to improve usability.

To quantitatively measure trust in each scenario, we averaged responses to
four Likert-type questions rated on a 7-point range (0-not at all to 6—extremely).
These questions were inspired by a widely-used scale for trust in automated
systems by Jian et al. (2000). Yet, as we considered it unfeasible for participants
to answer all 12 items in this scale 8 times, we selected and adapted the 4 items
that seemed most relevant for prediction models:

1. T am suspicious of the prediction model’s outputs (reverse-scored);
2. I am confident in the prediction model;

3. I can trust the prediction model;

4. The prediction model is deceptive (reverse-scored).

To measure participants’ experience with predictive regression, we combined
self-reported data and indirect experience indicators. First, participants self-
reported their experience with the concepts prediction interval, linear regression,
and time series prediction through checkboxes I know the word (K), I often
use it (U) and I can explain it (E). For each concept, we assigned a score
between 0 (very inexperienced) and 5 (very experienced) based on their answers
(K=1,K&U=3 K& E=4, K & U & E =5); the average F; served as
a final estimate for self-reported experience. Second, we scored participants’
experience between 0 and 5 based on their background (Ej) and use of jargon
related to statistics or predictive modelling during the interview (E;). Then, we
used the average of E,, E and E; as an estimate for experience with predictive
regression.

Finally, to qualitatively analyse participants’ feedback, we recorded the
interviews, which lasted 70-130 min, depending on the amount of feedback. We
then thematically analysed 120 pages of transcription, following the 6 phases
from Braun and Clarke (Braun and Clarke, 2012). Specifically, we first coded
our data deductively (i.e., starting from our four metrics) and then inductively
for each metric (i.e., driven by the data instead of preset topics). To guard the
originality of participants’ feedback and respect participants’ efforts to speak
English, we only corrected language mistakes in quotes below when clarification
was needed.
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5.4 Results

This section presents the findings of our study with 10 participants whose
specifics are shown in Table 5.1. First, approaching our visual DSS as a product,
we focus on usability and usefulness. Then, taking an XAl research perspective,
we turn towards model understanding and trust. Throughout, as summarised
in Table 5.2, we also highlight differences between participants who have low,
medium, and high experience with predictive regression.

5.4.1 Usability

Our semi-structured interviews brought up four themes on usability: Under-
standing the visualisation, Visual encoding of information, Interacting with the
visualisation, and Workflow.

Understanding the visualisation: most participants understood the
overall goal, but some visual components need clarification.

Overall, participants were very positive about the visualisation and understood
its main goal. For example, P4 found the visualisation “very readable” and
complimented it for being a “very simple instrument” with a clear aim; P5
described the visualisation as “very easy, simple, clear, and [without] any frills”;
and P8 stated: “The dashboard I like. It’s very simple and easy to use, so
it’s not too complex or anything like this. [...] It’s just easy to use, gives
you all the information [...] in a very sort of simple way”. Most participants
understood the visual components sufficiently and could use them without
further clarification.

Specifically, participants described the future uncertainty fans as “areafs/ in
which the price is statistically expected” (P1), which “shows the spread of [...]
the predicted values around the [prediction] line” (P9). In more economical terms,
P5 talked about “buffer points, which [indicate] the minimum and mazimum of
the variation of the future price” and considered the fans’ percentages to be “the
likelihood to be in these buffers”. Many participants furthermore observed that
uncertainty fans enlarge for larger percentages, entailing a trade-off between
precision and correctness: “/If you restrict a 90%-fan to a 50%-fan, then] you
have more accuracy but you don’t have a good prediction”.

In addition, participants correctly interpreted the past fit as the “fit between
the model and the real data” (P5), “normalization of the slope” (P3), “average
trend” (P3, P6), “natural evolution of the curve” (P4), or “total, general shape
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Table 5.1: Participants’ background information, including their experience
with predictive regression (| low, medium, 8] high) as an average of self-
reported experience (Ej), background (E}p), and jargon use (E;). All participants
identified as male and had a post-graduate education level.

ID

Profession

Country

Age

Experience (Es, Ep, E;)

P1

P2

P3

P4

P5

P6

P7

P8

P9

Industry: quality manager in a biscuit
factory; deals with food safety issues,
supply simulations

Industry: food safety auditor for a
certification body; audits companies on
food safety and fraud

Industry: quality manager in a biscuit
factory; deals with food safety issues,
supply simulations

Academia: professor in mechanical engin-
eering; expertise in food quality and life
cycle assessment

Academia: agricultural economist; expert-
ise in value chains, food security and
consumption

Industry: sales manager for a refrigeration
manufacturer; buys raw materials and sells
products

Industry: raw materials manager in a
food company; recruits agriculturalists and
keeps bees

Industry:  settlements coordinator in
a mortgages company; verifying and
approving mortgages *

Industry (Academia): researcher in agri-
culture; expertise in food chemistry and
-microbiology

P10 Academia (Industry): researcher in nat-

ural cosmetics; expertise in food science

Greece

Greece

Greece

Italy

Italy

Greece

Greece

Australia

Greece

Tunesia

45-54

35-44

35-44

45-54

35-44

35-44

18-34

35-44

35-44

18-34

4.7 (4, 5, 5)
0.6 (0.3, 1, 0.5)
2.9 (2.7, 3, 3)
4.8 (5, 5, 4.5)
3.9 (2.3, 5, 4.5)
3.8 (4.3, 4, 3)
0.2 (0, 0.5, 0)
3.7 (1, 5, 5)
4.6 (3.7, 5, 5)

4.3 (3,5, 5)

* active in finance, no experience in agrifood.
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Table 5.2: Some topics raised by the participants, ordered by their experience
with predictive regression (P2 and P7 have low experience; P3 has medium
experience; others have high experience).

experience with predictive regression
very inexperienced —9 e e very experienced
N \
= \

P3 P8 P6 P5 P10 P9 P1 P4

Understanding the visualisation
Past fit and uncertainty are not understood

Need for control
More control over the prediction model . e o

Need for comparisons

Comparing countries is relevant . e o
Comparing products is relevant ° ° . e o
Comparing prediction models is relevant ° .

Need for tailored explanations

Explaining the past data e o
Explaining the model’s development process e o o o
Explaining the prediction model ° . e o o o

Understanding the algorithmic level
Visual components gradually improve mental model . e o o o e o o

of the price evolution” (P10). However, P2 and P7 did not understand the past
fit line and P10 expected details when hovering over it.

Finally, while most participants seemed to intuitively understand the past
uncertainty, they often lapsed into vague descriptions or were unsure how it
was computed; e.g., “it’s the same like before: [...] the uncertainty factor”
(P3) or “I think that you used your future model, whatever the model, and you
trfied] to predict the past, I don’t know” (P6; you refers to the interviewer).
Especially P2 and P7 could not get their head around the past uncertainty, with
P2 questioning what others perhaps did not ask out loud: “If you have the real
numbers from the past, what’s important about the uncertainty?” Furthermore,
P10 seemed to misinterpret the prediction intervals for showing accuracy: “past
uncertainty, it gives us like our model is most of the time, 85% accurate, let’s
say, in this point, and at the same point here it’s 90%. I mean it gives us a
better understanding of the model and if it’s accurate or not”.

In conclusion, it would be helpful to clarify the past fit and uncertainty
components, especially for participants with low experience in predictive
regression (see Table 5.2). To clarify the uncertainty, adapting the fans’ tooltip
could be a start because P6 pointed out that currently, some might confuse
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the word ‘occasions’ with ‘iterations’ and therefore misinterpret the X%-fan as
representing “X out of 100 calculations.”

Visual encoding of information: visually encoding uncertain price
evolutions as a line graph with fans was clear yet limited.

All participants understood the visual encoding of price evolution as a line
chart, and also the visual encoding of uncertainty as fans did not seem to
cause confusion. Regarding the latter, P1 and P3 discussed the different shades
explicitly: “The more prices you get scattering around the line, the more, the
deeper the shadow becomes [and vice versal. So statistically, more prices are
expected to be falling in a short distance above or below the line”. (P1) and “as
it goes [from the prediction line] to the borders, [...] the possibility it goes down”
(P3).

Yet, the visual encoding has two limitations. First, when uncertainty components
are enabled, simultaneously plotting multiple countries can be “a little bit
confusing” (P2) or “a little bit disturbing” (P10) because of the many different
colours and the overlapping graphical elements that hamper hovering specific
fans. For example, when P8 plotted about 15 countries simultaneously, he
said bluntly: “Oof. [...] Yeah, I'm not really gonna get much out of that”.
Fortunately, participants realised that the trade-off between completeness and
overplotting is their own responsibility: “you cannot compare, I don’t know, 10
different commodities in 10 different countries, otherwise no one can understand
what is shown in the graph” (P5). Second, although participants understood
that the Y-axis unit was not important for the study, they frequently mentioned
that it should be clarified in real-life applications. For example, P6 joked: “I
mean, what is this 3007 300 cows or what?”

Interacting with the visualisation: participants did not experience
major filtering or hovering issues; zooming might be handy.

The filtering functionality was clear for all participants. Regarding the hovering
functionality, getting details-on-demand through hovering seemed natural for
both the line chart and the uncertainty fans. One minor remark here is that P5,
P6, and P7 did not spontaneously hover over the fans when they first saw them,
which suggests that a real-life fan chart might need to stress this possibility.
Two participants found the highlighting of hovered uncertainty fans suboptimal.
First, P8 regretted that he could not simultaneously highlight a fan and see
price details (“as soon as I move my mouse out, I lose it [the fan tooltip], so it’s
very fiddly”); and he proposed to allow pinning the fans. Second, P10 agreed
that highlighted fans obscure other details and suggested altering their visual
encoding from fans to lines that indicate standard deviations along with the
corresponding probabilities.
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In addition, P10’s interactions in Scenario 7 demonstrated that a zooming
feature could improve usability: P10 disabled the future uncertainty to reduce
the Y-axis’ length and thus artificially zoom in on the past fit lines to better
see small-scale changes.

Workflow: the current workflow for selecting products and countries was
clear, but alternative workflows might be more efficient.

All participants understood the current workflow of first choosing a product
and then selecting one or more countries. Yet, P5 and P9 proposed alternative
workflows that could improve usability when focusing on a fixed set of countries.
Tapping into the idea of focusing on a single country, P9 found it “a bit annoying
that anytime we are choosing a product [we need] to select again a country;
[ .. ] if you choose a product, you can play with the countries, but if you choose
a country you cannot play with the products”. Thus, to make the process of
comparing different products for the same country less “time-consuming”, he
would reverse the current selection order. Generalising this idea, P5 suggested a
two-step selection workflow: an initial step to “include all I want in the analysis—
for example, different products for the same country or different countries for
the same product”, followed by visualising the selected information. Then, “a
sort of matrix with all the countries I have selected” instead of dropdown lists
would allow to quickly (de)select countries or products, which is, for example,
convenient to remove overlap in the visualisation.

5.4.2 Usefulness and Needs

Participants raised two themes on usefulness (Owerall usefulness of the
visualisation and Usefulness of the visual components) and three themes on
their needs (Need for control, Need for comparisons, and Need for tailored
explanations).

Overall usefulness of the visualisation: a visual DSS similar to ours
was deemed useful for different tasks in agrifood or finance.

All participants agreed that visual DSSs similar to ours can be useful for different
tasks in agrifood or finance. Generally speaking, P2 said that “it’s a very good
tool for everyone in the food industry” and P5 expected that “a lot of people
are looking for something similar”.

More concretely, participants indicated that visualising predicted product prices
can benefit industrial and academical agrifood parties. For agrifood companies,
our visual DSS could be “useful mainly in order to make future schedules” (P9)
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such that “people who make decisions [and] who need insights in future price
evolutions [...] can make contracts [with suppliers] for the coming years in
order to avoid to pay too much” instead of reacting to the market (P3). In
addition, P2 saw a link with food fraud detection: “the food price many times
affects the food fraud cases [so] it helps companies to predict [the number of] food
fraud cases”. In agrifood research, P4 explained that researchers often study
economical aspects such as demand and logistics, so he found our visualisation
“very interesting [...] to make some evaluation about the importance of some
particular market and which is the prospective of that market”.

Participants also saw more general applications for our visual DSS. For example,
P10 stated that exporting companies would be interested in predicting demand in
foreign countries, and P8 indicated that financial companies would be interested
in predicting interest rates because “this sort of helps you make better business
decisions [...and] be better prepared”. Thus, our visual DSS could be more
useful when people can upload and visualise their own data. Furthermore, our
visualisation is not bound to be a standalone tool: P1 “would expect to see this
dashboard attached in [a full analysis of the prediction modelf; a text, showing,
ezxplaining how it works” and P3, anticipating that the prediction model could
consider climate change and geopolitics, saw the opportunity to extend our
dashboard with additional visualisations of, for example, temperature and
carbon emissions.

Usefulness of the visual components: how useful visual components
were depended on the context, but uncertainty was a natural requirement
for many.

Participants often mentioned that the usefulness of the visual components
depends on the desired insight. For example, while P5 found all components
“very useful” to analyse a single time series, he would probably hide the past fit
and past uncertainty when comparing multiple time series: “It depends in my
opinion on what you want to visualise”. In addition, P9 distinguished between
obtaining precise values and drawing overall conclusions about the trend: “You
need [...] the future prediction to have an exact number [...] but just to make
conclusions, you don’t need it. You just need the [future] uncertainty and the
fit”. Last, P6 noted that he did not need an explicit dotted line to get a feeling
about the general past trend. Given these considerations, the flexibility to
enable and disable visual components in our visual DSS seems very useful.

Regarding the uncertainty components, most participants considered them a
natural requirement because of the predictive context. For example, P1 said
“Whenever we need to predict something, there is always an uncertainty in
our prediction. So it’s more something that I would expect”. and P8 agreed
“There are always going to be [macro level] factors that sort of change the
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prediction”. Some participants even asked for future uncertainty representations
right in Scenario 1: “It could be interesting [...] to have the minimum and
mazximum value in that prediction period. A sort of standard value. [...] T
expect [...] a sort of uncertain value [instead of] a precise value”. (P4) and
“Maybe you should add some best cases and worse cases” (P10). While discussing
uncertainty, participants also touched upon a fundamental trade-off: “It’s like
a double-shaped blade, you know. It gives you more liberty in choosing which
kind of occasions you will be having, and at the same time, it gives you like not
accurate results”. (P10), and “The thicker the lines [fans] become, the more
useless the data because [...] everything is within specs, but you see you have
a huge variation” (P1). P4 added that, instead of multiple uncertainty levels,
he only required a lo-interval. Overall, it thus seems essential to visualise the
uncertainty in predictions, potentially allowing to modify the number of shown
uncertainty levels.

Need for control: some participants requested additional control over
the visualisation or the prediction model.
Some participants proposed additional features to explore the visualisation.
Specifically, P5 suggested to allow filtering on specific time intervals; P5 and
P10 proposed to allow changing the currency such that end users can better
relate to the price evolutions; and P8 was looking for more in-depth pricing
details such as the price per unit, retail price, and trading indicators such as
the moving average convergence divergence.

In addition, some participants highly experienced with predictive regression
voiced a need for more control over the prediction model (see Table 5.2). For
example, P1 explained that he wants absolute control over prediction models:
“I use quite often the regression, the data analysis function in Excel. So I use
the data in the way I want. I fit the models that I consider to fit best for the
case. [...] The visualisation [...] would be quite helpful but based on what I
have seen until now, I wouldn’t [...] consider very much the prediction values.
I would only use it for historical data acquisition”. P5 also seemed to allude to
this by stating that our visual DSS would be “extremely useful” if scientists and
practitioners could download the available data and graphs for further analysis.
Other requests for control were changing the predicted time span (P2, P4, P8)
and the time frame used for training the prediction model (P1).

Need for comparisons: participants found it important to simultan-
eously compare countries, products, and prediction models.

Participants across all levels of experience with predictive regression stressed
the relevance of comparing countries (see Table 5.2). For example, P9 said: “Of
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course comparing different countries is really useful because we are talking about
[-..] a unite Europe [and] you might have incoming products from different
countries. [... You] might have a purchaser from Italy and one from Germany,
so you have both as an alternative to buy materials”. Given this united European
market, P8 added that he liked comparing prices with the European average.

Regarding the need to compare products, two ideas to extend our visual DSS
arose. First, P3, P5, and P9 suggested to compare similar products (e.g.,
cereals, sweeteners, vegetal oils) in the same graph to understand potential
relations between them. Such insights could, for example, be useful for farmers
and regulatory bodies: “the decision for farmers to produce rice instead of
maize, or wheat instead of barley and so on, could be strongly conditioned by
the provision [...], and regulatory bodfies] for the market can provide specific
support for specific farmers”. (P5). Second, P10 suggested to simultaneously
compare different products: “For instance, if you want to make a muffin, you
would have like flour, wheat, some milk, some eggs, flavour vanilla or chocolate.
So you wanna keep each ingredient into consideration. [...] Maybe you can
have like a [curve] for each ingredient [...and see the total] cost [for] the final
product”.

Last, participants experienced with predictive modelling would find comparing
different prediction models useful to get an idea about how well they agree on
their predictions and to, as P8 mentioned, follow the most frequent prediction,
giving more weight to sophisticated models. Still, P1 emphasised: “/I] would
expect each model to be discussed: why does this model predict different values
from another one and the reasoning behind that”.

Need for tailored explanations: participants required tailored
explanations about different aspects with different levels of detail.

Participants brought up four different aspects for which they needed
explanations, and, interestingly, Table 5.2 shows that these participants had
low to high experience with predictive modelling. First, P1 and P4 required a
discussion of the past data and sudden peaks or troughs, backed by economical
factors. Both P9 and P10, however, suspected that people active in industry
would be most interested in explanations regarding the future, rather than the
past. Second, participants wanted to know more about the provenance and
accuracy of the raw price data, the model developers, the data processing, and
the training of the prediction model. Third, P2 and P6 wanted to know how
reliable the predictions were: “The [end user] needs to feel that the model is
predicting OK without knowing though what the model is doing. [...] You need
somehow to explain to the end user what could be the prediction capability”. (P6).
Fourth, typically triggered by the steep predicted price increases in Scenarios
1-8, many participants requested explanations about the prediction model itself.



98 VISUALLY EXPLAINING UNCERTAIN PRICE PREDICTIONS IN AGRIFOOD

For example, P3 asked about the model’s input factors: “For me, it’s very
critical to understand what factors this model takes into account to predict such
a high rise of the butter [price].”, and P4 wanted “a basic idea on how the
prediction model works rather than going with something sort of blindly, [to see]
evidence that this all works”.

Furthermore, two participants had opposite views on the required level of
detail in explanations. On the one hand, P1 requested full transparency of
the prediction model: “If it is a regression, I would be interest[ed] to see the
equation that comes from the model. I would expect to see a discussion on the
price variation, the reasoning”. On the other hand, P6 vividly argued that he
did not need this amount of detail: “ I don’t believe you need to give it to a
third party, to a user, when [they are] looking at data, the mathematics behind
the model. [...] In my job, for example, one of the most important things is to
know raw material prices [...] and I need to have a good prediction. Now how
the prediction works? I really don’t care”.

The two observations above seemed to be part of a more general phenomenon:
many participants alluded to tailoring explanations, i.e., adapting them to
different contexts and to the people that need them. For example, P4 attributed
his need for a description of the model to his “research mind”, but added that
seeing uncertainty already filled part of that need, while economists would
probably require more details: “After seefing ...] the statistical evaluation
[uncertainty/, in my opinion, my need [for a more detailed explanation] is
lower because I of course consider the fact that perhaps they derived from some
economical model that are at the basis of this evaluation. [...] Perhaps for
economistfs ... [ it would be more interesting to know something more about the
model. But of course, this is not my topic so for me it’s sufficient what I see in
the graph”. Similarly, when P1 asked for “a very thorough discussion” of the
prediction model, he added: “But this is me, OK. I'm an engineer, I’'m quite
experienced in mathematics and statistics and you understand, I know how it
can work. I don’t know if the same discussion was done with somebody who
is not quite good in maths or in statistics, what his[/their] perspective would
be.” Finally, while P5 found our visual DSS useful for educational purposes, he
acknowledged that he would require more a detailed explanation when using
it in high-stakes contexts: “If I need to use it for a practical or a professional
use, like the support for the country or the region, for a specific policy, and so
on, I think I have to give them, to guarantee them about the quality of the data.
And if I don’t know exactly the model, what you have included and so on, and I
couldn’t replicate your analysis, it’s quite impossible to use it as a standard or a
benchmark”.
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5.4.3 Model Understanding

This section uncovers how the visual components and functionalities in our
visual DSS impacted participants’ understanding of the prediction model.
Three themes, Understanding the algorithmic level, Understanding the outcome
level, and Understanding by comparing countries, reveal that understanding
manifested itself on an algorithmic and an outcome level.

Understanding the algorithmic level: the visual components improved
participants’ understanding of the prediction model’s technicalities, but
only gradually.

In Scenarios 1 and 5, all participants indicated that simply plotting predictions
does not invoke model understanding. For example, P5 stated: “I have no
idea which kind of variables you included in the model, if the model is based on
different variables, I don’t know, so the general international market or a policy
decision, a local decision in France, or climate change or climate information.
[--.] and the technological evolution or [...] macroeconomic data”. This lack
of understanding was typically followed by a request for an explanation.

Yet, the stepwise introduction of extra visual components improved many
participants’ mental model of the prediction model, ranging from a better
intuition to identifying the true modelling technique (see Table 5.2). To P3, P4,
and P8, the future uncertainty suggested the model to be a statistical technique:
“It was more clear to me that we’re not talking about, let’s say, absolute values,
but talking about the statistical model, so there you can see the possibility of
the price evolution of the butter to be inside this space” (P3). After enabling
the past fit, P4 and P10 noticed that the past fit and future prediction formed
a continuous curve, which gave them a better idea about how the prediction
was constructed: “/I] know in a better way the model [...] the evolution of the
future is more clear [...] Of course, I don’t know which is the mathematical
model but I know that this is in a sort of curve, fit that you obtain, and so the
model, I see the input from this evolution of the data” (P4). Visualising the
past uncertainty sometimes further reinforced understanding the link between
past fit and future prediction: P4 noted that “with this representation [...] the
future prediction is completely integrated in the previously data” and also P6,
while unsure about how the past uncertainty was generated, got the feeling that
the prediction was based on the trend line. After seeing the uncertainty and
fit components, P1, P8, and P9 even strongly suspected that the prediction
model was a regression. For example, P1 correctly identified the prediction as a
third-degree polynomial, but he admitted that the visual components did not
reveal the precise mathematical equation.
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P6 explained how the “step by step approach” allowed him to “understand
parts of how the model works” without revealing the technicalities: “If you
would only show me the first picture, no, I would not be able to tell you how
the model works, but going to the future uncertainty and past uncertainty, and
presenting also the trend line, then OK, you get a clearer picture of how the
model probably works. But still, the details, it’s not something that I think
you can get with these simple steps”. Furthermore, he added that none of the
visual components was all-enlightening: “Obviously it had to do with the whole
sequence. [...] Step by step then you can get it. But it’s not like you go like
you know ‘wow, wow, this is clear now’ [...] it is a gradual, let’s say, picture”.
Interestingly, to improve the mental model faster, P4 suggested an alternative
“more logical” order for enabling the visual components: he would first show the
past data, past fit, and past uncertainty to explain “that you have a statistical
consideration” and only then show the future prediction and future uncertainty
to clarify that they are “derived from the past fit”.

Understanding the outcome level: the visual components allowed
participants to interpret model outcomes and assess their accuracy.

Participants often commented that uncertainty did not explain the prediction’s
upward trend. For example, P5 said that “uncertainty doesn’t explain the
prediction, it’s just more inclusive” and P1 added that he did not know whether
he “should expect that the price would increase or would decrease sharply” after
the prediction horizon.

However, the uncertainty and past fit components gave participants insights into
model performance. In particular, P5 explained that the uncertainty revealed
how well the model fits the data: narrow uncertainty meant a good fit; wide
uncertainty meant a worse fit. The past uncertainty was also “a sort of measure
of the robustness of the model” (P5), which gave a “better understanding of
the model and if it’s accurate or not” (P10) and indicated whether “the past
performance might repeat itself in the future, providing that the trend remains
the same” (P8). The past fit, then, allowed participants to detect outliers due
to exceptional market events. For example, when P1 enabled the past fit, he
said: “[The] model has explained reasonably, reasonably, the variation of butter
price throughout the decades. Could not predict the peak that occurred in 2008.
Might have been an issue due to the financial crisis [...] We don’t have this
information but something has happened there that could not be predicted”.

Finally, P6 proposed to assess model performance by comparing a country’s
past data with what the model predicts without that data: “why you don’t [...]
compare what the model told us and what actually happened? Then you can
evaluate also the effectiveness of your model”.
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Understanding by comparing countries: comparing countries had
cons for understanding the algorithmic level, but pros for understanding
the outcome level.

On the algorithmic level, the feature to compare countries sometimes led to
misunderstanding the model’s technicalities. This was illustrated by P3, who
in Scenario 5 wrongly assumed that, to predict product prices in one given
country, the prediction model also considered data from other countries: “This
model probably took into account what happened in the region, I mean in Europe,
during this period of time. So that’s probably why the price of the butter in
France is going to rise so much. [...] now I can understand, let’s say the
reasoning behind this slope, why this slope is very steep [and] goes up”.

On the outcome level, however, comparing countries allowed participants to
better understand the model’s performance. P4 and P10, for example, were
especially interested in the model’s consistency and expected that countries with
similar price evolutions in the past would have similar price predictions. More
importantly, in our experiment, showing data from France and the Netherlands
allowed participants to compare the model’s prediction for France with real data
from the Netherlands. For P1, “that was what actually convinced [him] that the
model is quite unreliable” because “we can see that the actual data of Netherlands
are far away from the prediction of the forecasted data for France”. Similarly,
P5, P6, and P8 emphasised that the divergence in price was accentuated by
the fact that a large portion of the real data for the Netherlands did not lie
inside the future uncertainty fans for France: “the prediction buffer which should
include all the data, more or less because it’s 99% of the variation, doesn’t
include, doesn’t encompass the real data [...] If we assume that [...] data of
the Netherlands would be a reliable prediction [for France...] there is a big
problem with the prediction model” (P6).

5.4.4 Trust

Our results on trust consist of two parts. First, we present participants’
quantitative trust evolution over the eight scenarios to spot differences and
similarities. Next, we contextualise observed trends with the thematically
analysed qualitative feedback.

Quantitative Results on Trust

Figure 5.4 shows the evolution of participants’ reported trust scores over all
scenarios. Overall, participants had very different trust evolutions. Yet, there
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Figure 5.4: Participants’ trust in the prediction model over eight scenarios.
Scenarios 1-4 showed data for one country; Scenarios 58 showed data for two
countries. Lines are slightly jittered for clarity. The legend includes the level of
experience with predictive regression (| low, Eif] medium, 8] high).

is a clear distinction between two groups: P1, P5, and P6 converged to low
trust, whereas the other participants converged to at least rather trusting
the prediction model. The level of experience with predictive regression did
not explain this distinction because, for example, while P1 and P4 had the
highest experience scores, they were both on different extremes of the trust
scale. Another observation is that few participants reported dramatic changes
in trust: only P6 and P10 have a difference of at least 2.5 between their minimal
and maximal trust scores.

Qualitative Results on Trust

Four themes impacted trust in the prediction model. The first two themes, Model
performance and Model understanding, were heavily impacted by expectation
violation and expectation agreement: when participants encountered things
that did not meet their expectations, their trust typically decreased, and vice
versa. The other two themes, Presence of uncertainty and Ezplanations, tapped
into what participants required for growing trust.
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Model performance: seeing the model performance affected how
participants assessed the model’s trustworthiness; seeing model failures
had a negative impact.

In Scenarios 1-4, participants assessed the prediction model based on the past
fit and past uncertainty. The past fit did not decrease most participants’ trust
because it seemed to fit “reasonably good the price variation, though in quite
some [...] rough estimation” (P1) and thus “gives more robustness to the model”
(P5). Yet, for P6, the past fit highlighted that specific outliers were not foreseen
by the model, which made him more unconfident: “Why does not predict that it
will have a peak and then go down again. [...] It does not persuade me. [...]
I'm losing my confidence with a trend line”.

Likewise, the past uncertainty led to mixed trust responses. On the one hand,
some participants indicated aspects that increased their trust. For example, for
P4, the option to do an “evaluation of the data during the past” increased his
trust in “the correctness of the model”. P10 made a similar argument based on
the fans showing the model’s accuracy: “I think this past uncertainty will add
more credibility to our prediction model [...] I think I’'m better trusting this
model, [...] I can have a better understanding [...] of the prediction model as
it goes over the years”. Furthermore, P8 observed that most of the data points
lay inside the uncertainty fans, but found it reassuring that some lay outside:
“[the price] falls out every now and again, which I mean, it does happen with
everything. [...] I guess il increases my trust because if it was too perfect,
you’d be like, you know, I mean, nothing in life is 100% certain, so why would
this thing be?” On the other hand, P6 actually became more hesitant when
seeing a peak outside the 99%-fan: “So there is a problem there, right? I know
that it is only for a small period of time, like few months that the model fails
over whatever I see here, like 25 years. But still, it fails. Is it acceptable? I
don’t know. I mean, if it was inside the band that I see here, maybe I would be

happy”.

In Scenarios 5-8, participants often assessed the prediction model by comparing
the prediction for France with the real data or the past fit for the Netherlands.
Many participants noticed a divergence between both: “the butter price in
France historically was closely linked to the butter price in Netherlands and we
can see that the actual data of Netherlands are far away from the prediction
of the forecasted data for France” (P1). As Figure 5.4 shows, this resulted in
a huge drop in trust for P1, P5, P6, P8, and P10 because they expected a
prediction for France similar to the data for the Netherlands. For example, P1
said that he “would not trust this model at all” because it “convinced me that
the model is quite unreliable”, and P6 motivated: “I don’t trust the model. You
see, the real data was totally different than the prediction. [...] obviously, you
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prove that in a sense there are flaws in the model prediction”.

Yet, not all participants experienced the divergence as an expectation violation.
For example, P4 pointed out that the long-term performance seemed good
and hypothesised that market events might have caused the divergence: “in
2010 you have a differentiation. |[...] the events that you have in Netherland
are perhaps due to particular events that you had there, which I don’t know,
of course. [...] in the extrapolation, [...] the values are different, but the
behaviour is very similar. [...] But I consider that at the end, five years later or
10 years later, also in Netherland you have the same price”. P8 make a similar
remark in Scenario 6, restoring his trust afterwards: “if you look at around 2016,
the price prediction is way off. Way way off, but it sort of meets the further it
goes along. So I think [...] if I was trying to make a price prediction like five
years in the future or something, I trust it more, rather than, I would if it was
one or two years in the future”. However, P5 called these observations of ‘good’
long-term performance a “bias in the visualisation” caused by the prediction
for France coincidentally stopping at the real peaks of the Netherlands.

Model understanding: participants’ trust reactions differed depending
on how they understood the prediction model on an outcome or algorithmic
level.

Participants’ model understanding on an outcome level influenced their trust.
A typical example was Scenario 1, where the prediction line caused a lot of
scepticism because it violated many participants’ expectations for two reasons.
First, participants could not understand its steep slope. For example, P10 joked
“it can’t be like this: it goes like higher up in the sky. [chuckles]” and P6 added:
“The trend of the previous ten years, no 20 years, does not imply that you’re
gonna have this rapid index increase”. Instead, some expected a price behaviour
“similar like the last 10 years, let’s say” (P3). Second, participants noticed that
it did not have peaks or troughs like the past data: “The thing that I’'m worried
about it that the curved line is like so decent, so perfect, so shaped”. (P10); and
“that peak that I see on October of 2007 and that trough that I see on March
of 2009 is not what I see in the model prediction, comparing five years to five
years”. (P6). However, most participants still reported a trust score above
neutral because of mitigating considerations that agreed with their expectations.
For example, P6 noted that in the last few plotted years, “there has been an
increasing rate which does not look too different toward what the prediction
model has there”. Furthermore, due to “the global inflation and the economic
crisis etcetera, and a lot of pressure on the market places” (P10) increasing
prices seemed plausible: “usually we have increase prices, not decreases [laughs],
so that’s why I'm more in the part that I'm trusting the prediction” (P9).



RESULTS 105

Participants’ trust was also affected by their model understanding on an
algorithmic level. First, understanding decreased trust under expectation
violation. For example, P6 understood that predictions were based on the past
fit, but observed several unexpected things, which is why he insisted: “I have a
better understanding how the model works, but I don’t trust it, I insist”. Second,
understanding increased trust under expectation agreement. For example, in
Scenario 5, P3 gained trust because he built a (wrong) mental model that met
his observations: “this model probably took into account what happened |[...]
in Europe [...]. So that’s probably why the price of the butter in France is
going to rise so much. [...] I would say that I'm not suspicious anymore.
[ .. ] Because now I can understand, let’s say the reasoning behind this slope”.
Furthermore, P9 reported high trust scores because he saw “nothing strange.
It’s just what I was expecting to see. [...] it’s just a regression [...] for me
that I'm understanding how the models are working now, it looks normal”. One
comment here is that P9, upon seeing the diverging behaviour of France and
the Netherlands in Scenario 5, also mentioned: “it might, change my trust for
the model as a model, OK, and how you incorporate the model in your data set
but not for the prediction that we are generating for the future. Maybe a better
model will give you better [results]”. This suggests that P9 based his trust on
how the prediction outcomes were computed, rather than whether regression
was a suitable technique.

Presence of uncertainty: seeing that the prediction model accounted
for uncertainty did not decrease participants’ trust.

In Scenario 2, none of the participants indicated that their trust in the prediction
model decreased because of the presence of future uncertainty. On the contrary,
most participants’ trust increased. P9, for example, explained why: “the more
descriptive the model becomes, and the more alternatives that it gives you, it
makes you trust more. When you have just a line, you more or less, you cannot
believe that things in real life are so accurate, right? [chuckles ...] I would say
that future prediction without future uncertainty is not much trustful”. While
P1 and P3 agreed with this, they both stressed that the uncertainty did not
increase their trust dramatically because it did not take away their need for
an explanation: “it’s a model that takes some reasonable uncertainty, but still
I cannot trust it because I don’t know how it was developed”. (P1); and “I'm
more, let’s say, confident about this prediction model. But still, I want to know
the reason why the butter has to go up”. (P3).

For P4, the uncertainty overall generated more trust because it suggested the
prediction model to be the product of scientific studies: “I trust in a more—I
suppose that behind this value you have some studies, some studies that come
from your research for your ability”. Furthermore, related to algorithmic model
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understanding, P4 believed that the uncertainty suggested the prediction model
to be of a statistical nature: “I prefer the fact that the model works in a statistical
way because with some consideration, I suppose this is more right in a model
that works in the future. [...] I'm more and more trusting, trust about the
correctness of the model”.

Explanations: participants considered explanations about the develop-
ment process and the prediction model requisites for building trust.

To trust the prediction model, participants mentioned that they needed an
explanation about the development process and data provenance. For example,
P1 said that “in order to trust a prediction model, I need to know how it was
developed”. Furthermore, P4 and P5 alluded to the importance of who developed
the prediction model. P4 referred to trusting the model developers’ competence:
“when I approach information that come from an organisation or something like
you, I suppose, my behaviour is to accept this evolution because I suppose that
you have the competence to develop a model. [...] I have to believe in you with
some [...] suspicious behaviour”. In turn, P5 argued that a model stemming
from an official institution might be more reliable: “if such a prediction comes
from an official body like FAO or World Bank or so on, could be more reliable,
I can say. If come from a university [...] it’s not an official body and it’s
more difficult to understand. So I just can imagine that [...] when a World
Bank provide prediction, it’s the fruit of the convergent opinion of different
practitioners and scientists”. Concerning the data provenance, P1 asked about
the accuracy of the given historical data because “in order to trust a prediction
model, I need to know [...] what is the raw data [in]put”.

Participants also considered an explanation about the prediction model itself
key for building trust. For example, P5 did not trust the prediction in Scenario 1
because “I have no idea how you provide this prediction, how you calculate it
and the model behind. [...] there is no explanation of the model, and it’s quite
difficult to trust in the model without any description”. P1 agreed: “whenever I
have a prediction model, I always try to find the physics and engineering behind
that. If there is no physics explanation or engineering explanation, I'm quite
sceptical”.

5.5 Discussion

This section answers our research questions by discussing our quantitative and
qualitative results. Then, based on our observations, it underlines the need for
user-centred approaches in agrifood to increase the uptake of visual DSSs.
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5.56.1 A User-Friendly and Useful Visual DSS

Our results show that participants were generally very positive about our
prototypical visual DSS in terms of usability (RQ1): the visualisation, its
interaction possibilities, and the general workflow were clear overall. In addition,
participants imagined that a visual DSS similar to ours would be useful as
support in several decision-making contexts, including food fraud detection,
business scheduling, and market evaluation (RQ2). They also highly appreciated
that our visual DSS fulfilled their need to compare countries and that visual
components could be restricted to those relevant for desired insights. Thus, our
prototype seems to be a user-friendly flexible basis for more advanced visual
DSSs that extend our interface, and could be embedded in (dynamic) analytics
reports.

Yet, we recognise two points of attention related to people’s experience with
predictive modelling. First, while many participants stressed the usefulness
of uncertainty, our prototype could not remove all confusion around past
uncertainty and past fit. Thus, especially for people who are less experienced
with predictive modelling, it seems necessary to elaborate on the past fit and
uncertainty components when used in a visual DSS. This could be realised with
more detailed tooltips, a brief information screen, or—as suggested by Sacha
et al. (2016)—a simple tutorial with some exemplar usage scenarios. Second,
especially people with high predictive modelling experience could have a need
for controlling and comparing different prediction models. To meet this need,
visual DSS in agrifood could draw inspiration from visual analytics systems
evaluated in other domains (Ali et al., 2019; Badam et al., 2016; Bogl et al.,
2014).

5.56.2 Tailoring, Tailoring, Tailoring: Different End Users,
Different Needs

Participants covered three important needs (RQ2): controlling the visualisation
and prediction model; comparing countries, products and prediction models;
and getting explanations about the past data, data processing, prediction
reliability, and prediction model. Interestingly, other studies on predictive
DSSs also revealed a need for comparison. For example, comparing cows’ milk
production allowed animal researchers to identify trends, clusters, and anomalies
(Di Silvestro et al., 2014); and product demand analysts expressed the need to
compare prediction performance for similar products (Sun et al., 2020).

Overall, participants’ needs seemed heavily subject to their personal background
and job activities. This shows the importance of tailoring visual DSSs and
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explanations on at least three levels. First, tailoring towards the application
context: the specific agrifood subdomain and the overall goal of the visual
DSS determine which functionalities and visual components are useful. Second,
tailoring towards experience with predictive modelling: for people with low
experience, an intuitive understanding of the prediction model and little control
over the prediction model might suffice, whereas people with high experience
might require mathematical explanations and control over the prediction model.
Third, tailoring towards tasks: different tasks and desired insights might require
different visual explanations, similar to what Gutiérrez et al. (2019b) argued
for.

5.5.3 Gradual Model Understanding through Visual Analysis

The visual components and comparison functionality in our visual DSS affected
participants’ model understanding on two levels (RQ3). On an algorithmic level,
many participants gradually grew a better intuition of the model’s technicalities.
In XAI terms, the visual components thus served as explanations that fostered
their mental model. On an outcome level, participants could better interpret
predictions and assess their accuracy.

However, some participants created mental models that did not stroke with
the real regression model. For example, they assumed that the model
based its predictions on price evolutions in multiple countries or considered
additional input variables such as climate and geopolitics. This suggests that
complementary explanations are necessary to avoid wrong assumptions, bearing
in mind that these explanations should balance soundness and completeness
(Kulesza et al., 2013): simply adding more information does not necessarily
spark useful mental models. Other participants’ model understanding did not
improve because they could not analyse the visualised information thoroughly,
most likely due to low experience with predictive regression or time series
analysis overall. To grow correct model understanding, such end users seem to
require more guidance in the data analysis process; it is unclear whether the
current exploratory nature of our visual DSS fits this need.

5.5.4 Trust Is Multi-Faceted and Evolves

Our results subscribe to the multi-faceted and evolving nature of people’s trust
in a prediction model (RQ4), similar to many previous studies (Hoff and Bashir,
2015; Holliday et al., 2016; Nourani et al., 2020; Ooge and Verbert, 2021). We
identified four themes that influenced people’s trust: the model’s performance,
understanding the model, uncertainty in the model’s outcomes, and explanations
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about the development process or the prediction model itself. The former two
themes were strongly coloured by whether participants’ expectations were
violated or met; the negative impact of expectation violation is in line with
findings from Kizilcec (2016). The latter two themes covered what participants
deemed necessary to grow trust. The fact that participants required the presence
of uncertainty for building trust reinforces the call for incorporating uncertainty
in visual DSSs for agrifood.

)

We observed clear evidence of trust calibration (Sacha et al., 2016): participants
trust was based on a continuous trade-off between the aforementioned four
themes. The direction in which their trust evolved then depended on which
theme was most dominant. For example, most participants initially focused
on requiring explanations. Some then evolved to distrusting the prediction
model due to low performance, whereas others developed more trust due to
observations that matched their model understanding. This explains the different
trust evolutions in our quantitative measurements. An important note here is
that the quantitative scores are hard to compare directly because participants
typically have different calibrations for scoring. On an individual level, though,
we found that most participants’ trust scores did not change drastically over the
eight scenarios. For participants with low experience in predictive modelling, this
was most likely due to their inability to fully analyse the visualised information.
Why these participants trusted the prediction model nevertheless is unclear.
Potentially, factors such as good usability fostered their trust, or the participants
reported what they conceived as desirable.

5.5.5 Fostering Appropriate Trust Through Usefulness and
Meeting Needs

While our results presented four evaluation metrics and their corresponding
themes separately, some themes are connected or partially overlap. Figure 5.5
summarises all themes together with their most relevant relations grounded
in our qualitative data. The relations clearly link usefulness to trust, either
directly, or indirectly via model understanding.

Two direct relations concern uncertainty and explanations. First, while
uncertainty was considered a natural and useful requirement for bringing nuance
to predictions, participants also considered it a requisite for building trust.
There exist interesting parallels in other domains: for example, people tend
to discount weather forecasts without uncertainty (Franconeri et al., 2021).
Second, participants often stressed a need for explanations about the prediction
model and its development process, adding that they could not build trust
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.- Usability Usefulness and needs
Understanding the visualisation Need for comparisons
Visual encoding of information Overall usefulness of the visualisation
? Interacting with the visualisation Usefulness of the visual components
Workflow Need for tailored explanations

Need for control

v

Trust

Presence of uncertainty Rlec Rt A ine

Explanations Understanding the algorithmic level

Model understandingi/— Understanding the outcome level

Model performance Understanding by comparing countries

Figure 5.5: Summary of the themes on usability, usefulness and needs, model
understanding, and trust. Some relations between themes are indicated with
arrows; themes are reordered to avoid overlap.

without them. This illustrates the relevance of XAl research into the utility of
explanations (Davis et al., 2020).

Two indirect relations link usefulness to trust through model understanding.
First, the visual components in our DSS were deemed useful for understanding
the model on an algorithmic level. Control over the prediction model and tailored
explanations about the prediction model were expected to facilitate the same. In
turn, observing things that agree with model understanding led to increased trust.
This suggests that improving model transparency with tailored explanations, for
example carefully designed visualisations, can foster appropriate trust, which is
in line with common beliefs in the XAI community (Gunning and Aha, 2019).
Second, the visual components and the functionality to compare countries in
our DSS allowed participants to better understand model outcomes, which in
turn revealed model performance. Seeing the prediction model’s performance
allows assessing its trustworthiness, which is essential for appropriate trust (Han
and Schulz, 2020; Solhaug et al., 2007).

5.56.6 Taking a Step Back: Increasing Uptake of DSSs in
Agrifood with User-Centred Approaches

Before concluding, we reflect upon the broader impact of our findings for
agrifood. Central in our overall story was the lacking uptake of (visual) DSSs in
agrifood. Rose et al. (2016) pointed out that trust is a key factor for increasing
uptake. Quotes from our interviews such as “I think that for a scientist I can
use prediction data only if my trust on this data is full” (P5) and “you don’t
have the time to [...] explore if the model works or does not work. [...] I just
want to believe what I have in front of me” (P6) indeed seem to confirm that



DISCUSSION 111

people will not use applications they distrust. From this point of view, it seems
reasonable that scholars and practitioners in agrifood and other domains often
advocate for designing DSSs that increase trust.

However, simply designing for increasing trust is not always desirable and should
not be the final goal because trust eventually manifests itself when applications
prove to be reliable and useful over time (Davis et al., 2020). Our results,
summarised in Figure 5.5, support this claim: the relations between usefulness
and trust suggest that useful and tailored visual DSSs may eventually foster
appropriate trust. Therefore, it seems recommended to apply user-centred
approaches to design useful DSSs that meet end users’ needs. In the long run,
this can foster appropriate trust and in turn uptake. Furthermore, user-centred
approaches have the additional asset of exposing people to new technologies
(Parker and Sinclair, 2001), which can also stimulate trust (Rose et al., 2016).
Thus, user-centred approaches seem vital for ameliorating the current low uptake
of visual DSSs in agrifood.

5.5.7 Limitations and Transferability

Our research is subject to some limitations. Most importantly, our sample
of 10 participants is most likely too small to achieve full data saturation in
our qualitative results. Yet, it is encouraging that our trust themes largely
correspond to those found in our pilot study (Ooge and Verbert, 2021). Larger
studies could investigate whether more themes emerge concerning trust as well
as the other evaluation metrics. To further validate our observed differences
between people with different levels of experience in predictive regression, it
would be particularly interesting to include more people with low or medium
experience. Furthermore, future work can investigate the transferability of our
results to other domains such as finance and healthcare, where predictive models
play an important role too. Since our sample contained only one participant
active in finance, we cannot draw strong conclusions on potential differences
with agrifood yet. Finally, as good performance is a core factor for uptake of
DSSs (Rose et al., 2016), real-life applications based on our prototypical visual
DSS should include suitable models for forecasting time series, for example,
exponential smoothing or LSTM (Brockwell and Davis, 2016; Hyndman and
Athanasopoulos, 2018).
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5.6 Conclusions

We presented a prototypical visual DSS for agrifood that incorporates price
prediction, uncertainty and visual analytics techniques. An elaborate evaluation
with 10 participants active in agrifood or finance revealed many insights
concerning usability, usefulness and needs, model understanding, and trust.
For example, participants were generally very positive about our prototype’s
usability and discussed needs regarding control, comparison, and explanations.
Our results also show that usefulness and trust are related, either directly,
or indirectly through model understanding. Moreover, we observed that
participants’ job activities and experience with predictive modelling influenced
their perceptions and needs. Combining all these findings illustrates that
user-centred approaches are vital for increasing the uptake of visual DSSs in
agrifood.
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I started this project in January 2020, at the start of a period of frequent
self-doubt and gloom. I guess stress, my yearly winter blues, and the social
restrictions during the COVID lockdowns weighed heavier than expected. In
addition, it didn’t help that I couldn’t turn my head around how to meaningfully
assess people’s model understanding, trust, and perceptions of uncertainty
visualisation during an interview. One of the things that really helped me in
this difficult period were long walks in the Egenhoven Forest, Jesuit Park, and
Heverlee Forest. I also started photographing more, especially small things
such as the blue beetle in the picture. Unless I was listening to Numberphile
podcasts to absorb other researchers’ life lessons, the comforting nature helped
me think about a decent research plan. Fun fact: I had many breakthroughs in
a deserted research site, but I’'m still unsure whether I was allowed to be there.

Songs on repeat:

o Indecision and the rest of the Nothing’s Real album by Shura
e Comeback Kid by Sharon Van Etten
o Broken Sleep and the rest of the Myopia album by Agnes Obel
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Blue beetle in Egenhoven Forest — April 2020



Once I finished my research plan and prototype, I finally kicked off the interviews
in July 2020. It was wonderful to talk via Skype with people located all around
the world and their feedback gave me the perfect research materials. My virtual
travels to Tunisia, Greece, Italy, Hong Kong, and Australia also ignited a desire
to explore new parts of the world in person once the COVID situation allowed
it (Belgium was in a kind of soft lockdown during the summer of 2020). This
picture reminds me of the Droste effect you sometimes encounter when screen
sharing during a video call.

Songs on repeat:

e Goya! Soda! by Christine and the Queens

e Cookie Jar by Doja Cat

Back of a Cab and the rest of the Make My Bed album by King Princess
e Pretty Girl by Clairo
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Bicycle parking next to the imec tower — May 2020



This gift from my sister symbolises an adventurous writing journey in August
2021. Back in October 2020, I attended the online TREX workshop on TRust
and EXpertise in Visual Analytics. The work presented there gave me an extra
boost because it aligned perfectly with the topics I covered in my interviews. In
the following months, I transcribed, annotated, and coded my interviews. Yet,
analysing them over and over again, I was struggling to mould participants’
conflicting perceptions into a consistent story. In the meantime, a new edition
of TREX was announced and the submission deadline happened to be the
day before I planned my summer leave. A perfect target. However, being
a talented procrastinator and doubting the value of my thematic analyses, 1
still hadn’t started writing a paper the day before. Then, I decided to write
a paper in 24 hours. The story had been in my head for months and once in
the writing zone, I couldn’t stop. Overnight, I realised I had to get my COVID
vaccine in the morning in my parents’ home town. And so it happened I was
frantically writing the paper’s discussion on the train there, finishing it while
getting vaccinated. Yes, people asked questions. Even after rushing to my
parents’ house, I immediately locked myself in my room to do the finishing
touches and submit the paper. Only when I allowed my family to come in, I
realised I submitted too late due to time zone differences. Fortunately, the
ever-sweet workshop organiser Mahsan Nourani saved the day and my paper: it
got accepted (Ooge and Verbert, 2021).
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Wooden T-Rex — August 2021



By April 2022, T had finished the thematic analysis of the interviews and a first
version of the paper. Right on time for my first adventure abroad since the start
of the COVID pandemic: the CHI 2022 conference in New Orleans (United
States). Even though I attended the conference without a paper (that is, as
a tourist), it was an incredible experience. After almost three years, I could
finally connect in person with the human-computer interaction community, and
I enjoyed networking and exchanging research ideas wholeheartedly. After the
conference, my partner Yens came over and we had an amazing time exploring
New Orleans. One day, we organised a second hand book store tour and
discovered Arcadian Books € Prints, where thousands of books were crammed
in a space the size of a large bedroom. The book maze reminded me of my
thematic analysis: interesting stuff everywhere, yet it took time and effort to
spot the patterns hidden in the chaos. Shortly after New Orleans, charged
with new energy, I finished and submitted the paper. End of June 2022, Yens
attended a conference in Belgrade (Serbia) and it was my turn to visit him.
Coincidentally, I received the reviews during breakfast in the heart of the city.
And thus, this project filled with journeys fittingly ended during one.

Songs on repeat:

e Woman Is a Word by Empress Of

e [ Don’t Even Smoke Weed and the rest of the Us album by Empress Of

e Love Is A Drug and the rest of the I'm Your Empress Of album by
Empress Of
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Book store in New Orleans — May 2022






Part 1l

Explainability Through
Visualisation-Supported
Justification






Chapter 6 presents a study on how visualisation-supported
justification for recommended learning exercises affects
teenagers’ trust in an e-learning platform. This chapter was
published as a conference paper (Ooge et al., 2022a):
Ooge, J.*, Kato, S.*, and Verbert, K. (2022). Explaining
Recommendations in E-Learning: Effects on Adolescents’

Trust. In 27th International Conference on Intelligent User

Interfaces, IUI ’22, pages 93—105, New York, NY, USA.
Association for Computing Machinery

This work is the outcome of the master’s thesis by Shotallo
Kato, which I guided intensively. As joint first authors, we
contributed equally to defining the research plan, iterating
over the visual explanation designs, and interpreting the
results. Shotallo conducted all user studies, did the
implementation, and did most of the data analysis, whereas I
did most of the writing. Moreover, I presented the paper at
the TUI 2022 conference. The methods, results, and text were
discussed with Katrien Verbert.

Relevant to this part of the thesis is my contribution to the
following conference paper (Bhattacharya et al., 2023), briefly
described on Page 159:

Bhattacharya, A., Ooge, J., Stiglic, G., and Verbert, K.
(2023b). Directive Explanations for Monitoring the Risk
of Diabetes Onset: Introducing Directive Data- Centric
Explanations and Combinations to Support What- If
Ezxplorations. In Proceedings of the 28th International
Conference on Intelligent User Interfaces, IUI 23, pages
204-219, New York, NY, USA. Association for Computing
Machinery

As the second author, I conducted a focus group, helped
iterate over the visual explanation dashboard and the research
plan, and provided feedback on earlier versions of the paper.
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Chapter 6

Explaining Recommendations
in E-Learning

In the scope of explainable artificial intelligence, explanation techniques are
heavily studied to increase trust in recommender systems. However, studies on
explaining recommendations typically target adults in e-commerce or media
contexts; e-learning has received less research attention. To address these limits,
we investigated how explanations affect adolescents’ initial trust in an e-learning
platform that recommends mathematics exercises with collaborative filtering.
In a randomized controlled experiment with 37 adolescents, we compared real
explanations with placebo and no explanations. Our results show that real
explanations significantly increased initial trust when trust was measured as a
multidimensional construct of competence, benevolence, integrity, intention to
return, and perceived transparency. Yet, this result did not hold when trust was
measured one-dimensionally. Furthermore, not all adolescents attached equal
importance to explanations and trust scores were high overall. These findings
underline the need to tailor explanations and suggest that dynamically learned
factors may be more important than explanations for building initial trust. To
conclude, we thus reflect upon the need for explanations and recommendations
in e-learning in low-stakes and high-stakes situations.

6.1 Introduction

People are increasingly relying on recommender systems that suggest relevant
items, for example movies and music, tailored to their needs and interests.
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However, people are often left in the dark when it comes to why something has
been recommended. In the scope of explainable artificial intelligence (XAI),
many researchers agree that accompanying recommendations with explanations
is often desirable because it can, for example, increase appropriate trust in
the recommender (Adadi and Berrada, 2018; Mohseni et al., 2021; Tintarev
and Masthoff, 2011), which in turn can increase people’s willingness to adopt
technologies and their outcomes (Wang and Benbasat, 2005). Therefore, XAI
and trust have become prominent research topics in human-computer interaction.

However, the degree to which results of previous research on explaining
recommender systems can be generalized is limited because of three reasons.
First, studies are mostly framed in application contexts like media recommending,
e.g., (Berkovsky et al., 2017; Gedikli et al., 2014; Millecamp et al., 2019; Tintarev
and Masthoff, 2012), and e-commerce recommending, e.g., (Panniello et al.,
2016; Pu and Chen, 2006; Wang and Benbasat, 2005). Other contexts such
as education are explored less (Barria-Pineda, 2020). Second, most study
participants are university students or adults, resulting in scarce results for
adolescents (ages 11-19 (Fitton et al., 2013)). Third, on a methodological
level, most XAI research measures the effect of explanations by comparing
recommender systems with and without explanations. However, this comparison
could be unfair as recent studies suggest that the mere presence of placebo
explanations (i.e., explanations without any meaningful content) can already
increase someone’s trust in an intelligent system (Eiband et al., 2019).

To address these limitations, we investigated how explanations affect adolescents’
trust in an e-learning platform that recommends mathematics exercises, and
added placebo explanations as an extra baseline. In particular, we had two
research questions:

RQ1. Can explanations increase adolescents’ initial trust in an e-learning
platform that recommends exercises?

RQ2. How do placebo explanations influence adolescents’ initial trust in such
an e-learning platform?

Our research contribution is threefold. First, we show that explaining
recommendations can significantly increase initial trust in an e-learning platform
if trust is measured multidimensionally. However, when measuring trust one-
dimensionally, the increase is not significant, which suggests that mainly
dynamically learned factors grow initial trust. Second, by comparing our
explanation interface with a placebo baseline, we reveal that adolescents have
different needs for transparency, so tailoring explanations is essential. Third, we
present unique data on how adolescents trust and interact with our e-learning
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platform, which we share publicly in the spirit of open science!'. In sum, we
hope our work inspires other researchers to more often target adolescents and
study the impact of tailored explanations in e-learning.

6.2 Background and Related Work

This section discusses some challenges of explaining artificial intelligence, and
particularly recommender systems. Then, it zooms in on trust in automated
systems and previous studies on the trust effects of explaining recommendations.

6.2.1 Explainable Artificial Intelligence

Ever since the resurgence of artificial intelligence, there has been a call for
algorithmic transparency. Sophisticated algorithms are namely often ‘black-
boxes’: it is unclear how they precisely process vast amounts of input data to
obtain an output. Not explaining algorithms’ outcomes may suffice for low-
stakes applications such as movie recommendation but becomes unacceptable
in high-stakes contexts such as healthcare and e-learning. FEzplainable artificial
intelligence (XAI) is an umbrella term for techniques that try to explain the logic
behind algorithmic decision-making, such that people can understand it, grow
appropriate trust in the algorithm, and detect potential biases (Gunning and
Aha, 2019). A substantial challenge is that XATI encompasses many intertwined
topics including trust, fairness, bias, causality, accountability, privacy, and
human reasoning (Abdul et al., 2018). As a consequence, it is hard to find all-
embracing definitions for XAl and concepts like ‘explainability’, ‘interpretability’,
‘understandability’ and ‘intelligibility’ (Doshi-Velez and Kim, 2017; Gilpin et al.,
2018; Lipton, 2018).

Because of its broadness, the XAI problem can be approached from different
angles. Researchers in artificial intelligence follow an algorithmic approach: they
develop model-specific and model-agnostic techniques to investigate the local
and global behavior of machine learning models and their robustness against
data perturbations (Adadi and Berrada, 2018; Barredo Arrieta et al., 2020;
Guidotti et al., 2019b). In contrast, researchers in human-computer interaction
follow a human-centered approach: they often draw on the social sciences
(Ehsan and Riedl, 2020; Miller, 2019) and let human reasoning processes inform
XAT techniques (Wang et al., 2019a). In short, this led to the understanding
that there is no such thing as a one-size-fits-all explanation. Instead, design
requirements for explanations depend on the application context (Dhanorkar

1https ://github.com/Jeroenloge/explaining-recommendations-elearning
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et al., 2021; Vellido, 2020) and the target audience’s goals and personal
characteristics (Berkovsky et al., 2017; Millecamp et al., 2019; Mohseni et al.,
2021); and explanations can be evaluated according to several metrics (Hoffman
et al., 2019; Mohseni et al., 2021).

6.2.2 Explaining Recommendations

A lot of XAI research builds upon earlier research with recommender systems
(Tintarev and Masthoff, 2007a). For example, Herlocker et al. (2000) compared
several explanation designs for collaborative filtering recommenders to increase
acceptance of recommendations. Today, explaining recommender systems is
still a hot research topic, e.g., (Donkers et al., 2020; Jin et al., 2018; Kouki
et al., 2019; Tsai and Brusilovsky, 2019b), generating lively reciprocity with the
wider XATI domain.

In general, explanations for recommendations come in three representational
forms (Nunes et al., 2017). First, textual explanations use natural-language
phrases. Many commercial applications already employ these kinds of
explanations, following patterns like “People who liked X also liked Y” for
collaborative filtering recommenders, and “ You will like X because it has Y
and Z” for content-based recommenders. Second, visual explanations use
(interactive) visualizations to efficiently convey a lot of information. For example,
Herlocker et al. (2000) used histograms to show how neighboring users rated
a recommended movie; Tsai and Brusilovsky (Tsai and Brusilovsky, 2019a)
explained similarity-based recommenders amongst others with radar charts and
Venn diagrams; and Bostandjiev et al. (2012) visualized a music recommending
process with an interactive pathway chart. Third, hybrid explanations leverage
both textual and visual information. For example, Gedikli et al. (2014) used
tag clouds in which word size encodes relevance, and Szymanski et al. (2021)
combined a partial dependence plot with text on how to interpret the visual
information.

Designing explanations for recommendations brings challenges concerning what
and how to explain (Eiband et al., 2018). Usually, the recommendation algorithm
constrains the explanation type (Tintarev and Masthoff, 2011). For example,
collaborative filtering recommendations cannot be explained by their inherent
features. Furthermore, designing explanations involves making several trade-
offs (Kulesza et al., 2013). Tintarev and Masthoff (Tintarev and Masthoff, 2007b,
2011) discussed this in detail and outlined seven goals for explanations which
are not all simultaneously satisfiable: transparency, scrutability, effectiveness,
persuasiveness, efficiency, satisfaction, and trust.
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6.2.3 Trust in Automated Systems

Trusting automated systems has been found essential for adopting them (Pu
and Chen, 2006; Wang and Benbasat, 2005). At the same time, trust research is
somewhat controversial (Davis et al., 2020) because optimizing systems’ designs
to grow trust might lead to inappropriate trust, which can entail undesirable
effects like misusing technology (Bussone et al., 2015; Merritt et al., 2013). In
addition, trust is a complex topic. On the one hand, it has been defined in
many different ways, depending on the field or context (Madsen and Gregor,
2000) and entailing different themes such as competence, benevolence, and
reliance (Chopra and Wallace, 2003; Cramer et al., 2008; Grandison and Sloman,
2000; Lee and See, 2004; Muir, 1987; Wang and Benbasat, 2005). On the other
hand, it has been recognized that trust is not static but evolves (Holliday et al.,
2016; Nourani et al., 2020; Ooge and Verbert, 2021). Thus, measuring trust in
automated systems is challenging and researchers have proposed explicit and
implicit measuring techniques.

Ezxplicit measuring techniques ask people about their trust perceptions in
questionnaires or interviews. One-dimensional approaches measure trust with a
single Likert-type question (Holliday et al., 2016; Millecamp et al., 2019; Nourani
et al., 2020). Although this method is quick and easy, it is susceptible to people
interpreting ‘trust’ differently. Therefore, multidimensional approaches use
Likert scales to measure trust as an ensemble of multiple constructs. For
example, McKnight et al. (2002) introduced the concept of trusting beliefs
(Vidotto et al., 2012), consisting of the constructs competence, benevolence,
and integrity. Later research added more constructs, including perceived
transparency and intention to return (Berkovsky et al., 2017; Pu and Chen,
2007). Overall, while a multidimensional approach is more nuanced than its
one-dimensional counterpart, it requires longer questionnaires and is therefore
more time-consuming.

Implicit measuring techniques avoid the self-reporting bias in explicit meas-
urements by measuring trust through an intermediary. Examples are: loyalty
measured by the number of logins after sign-up (McNee et al., 2003; Tintarev
and Masthoft, 2011), acceptance rate for recommendations (Cramer et al., 2008),
time spent on a page, click-through rate, and page-exiting manner (Fox et al.,
2005). In the context of explaining recommender systems, implicit measurements
for trust have not yet been widely adopted, possibly because intermediaries like
loyalty require long(er)-term studies.
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6.2.4 Trust in Explained Recommendations

Previous research has shown that providing explanations for recommendations
can increase the acceptance of recommendations (Cramer et al., 2008; Herlocker
et al., 2000), and increase people’s trust in the recommender system (Berkovsky
et al., 2017; Pu and Chen, 2006). While previous studies typically focused on
recommenders for movies or e-commerce, e.g., (Kunkel et al., 2019), research in
an e-learning context is limited (Barredo Arrieta et al., 2020; Daher et al., 2017).
This is unfortunate as Abdi et al. (2020) recently demonstrated the potential of
a transparent educational recommender system: an Open Learner Model (Bull
and Kay, 2010) improved understanding of and trust in recommendations for
learning materials.

As trust is a relative measure, it must be compared to some baseline. Studies
on the effects of explanations typically include a baseline with no explanations.
However, a lesser applied baseline are placebo explanations. These ‘pseudo
explanations’ are semantically insensible (Langer et al., 1978), i.e., they do not
reveal any information about why something was recommended, for example
“This has been recommended to you because this is what the algorithm calculated.”
Surprisingly, Eiband et al. (2019) found that placebo explanations can invoke
similar trust levels as real explanations. However, Nourani et al. (2019)
found conflicting results outside the domain of recommender systems: placebo
explanations lowered the perceived accuracy of an image recognition system.

6.2.5 Underexplored Research Areas

Our literature overview shows that XAI re-nourishes the interest in explaining
recommender systems and how that affects trust in recommendations. However,
we see two underexplored areas. First, research on trust and explaining
recommender systems primarily focuses on university students or adults and
often neglects adolescents. Second, while e-learning platforms increasingly
adopt recommendation algorithms (Abdi et al., 2020; Dahl and Fykse, 2018;
Klinkenberg et al., 2011; Manouselis et al., 2014; Verbert et al., 2012), they
lack explanations for their recommendations. Our research addresses both
shortcomings: we design hybrid explanations for an exercise recommender on
an e-learning platform and investigate their effects on adolescents’ initial trust
(i.e., trust based on their first impressions of the platform).
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6.3 Materials and Methods

This section presents our e-learning platform with explanations for recommended
exercises and our overall study design. Our research was approved by the ethical
committee of KU Leuven (reference numbe