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Preface

This thesis is the result of four years of hard work. To complement the 6 chapters
that present my research in a traditional academic format, I also wanted to
“humanise” my thesis in a less conventional way. First, Chapters 4 to 8 conclude
with anecdotes and photographs that give a glimpse of what happened while I
was working on them. Second, the background section in Chapter 2 is written in
a non-academic style, hopefully making it easier for people outside my research
niche to understand the overall research story.

For the Einsteins among you, my brain friend will chime in with more
technical details from time to time. (Credits to flaticon.com.)

Humanising This Thesis With Glimpses Behind the Scenes

Chapter 2 will explain that AI is often a black box, producing outcomes in
an unclear way. In a sense, PhD trajectories are similar: there is typically
little context about how PhD researchers spend years working on their thesis.
Opening the “PhD black box” does more justice to at least three parties involved:

1. A PhD is extremely demanding for PhD researchers and their supporters.
Yet, academic texts do not reflect the painstaking hours, sacrifices,
adventures, and joyful moments needed to produce them. Theses remain
scientific texts, but they shouldn’t look as if produced by machines.

2. Sharing experiences and life stories can help fellow researchers better
process and battle against challenges that put their private lives and
mental health under pressure. PhD trajectories generate knowledge beyond
research outcomes.

3. Countless times, I have had to explain people outside academia what a
PhD entails, facing many misconceptions such as “studying for free and
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ii PREFACE

getting long holidays.” Academics should better communicate what a
PhD encompasses, acknowledging both the tough and enriching parts.

To show a bit of what happened during my PhD, I complemented each chapter
with four anecdotes and photographs I took. Furthermore, I acknowledged the
many people who supported me throughout.

Humanising This Thesis With A More Accessible Text

Academics sometimes joke that “apart from the examination committee, nobody
really reads theses.” While this might consolidate PhD researchers who stress
about their thesis, it should lead to more reflection: why do people seldom
read theses? One of the reasons is that academic writing styles, jargon, and
unengaging formats often obscure the fascinating content. More accessible
theses can benefit both fellow researchers and non-researchers:

1. Researchers are often very specialised, so, in the bigger picture, they are
rather unfamiliar with each other’s topics. Yet, many researchers want to
learn from other fields, which isn’t easy when dense papers are scattered
over different journals, conference proceedings, and books. Accessible
theses are ideal to quickly get a taste of new research areas. This fosters
interdisciplinary collaboration and benefits science as a whole.

2. Non-researchers have different opinions about inaccessible scientific texts,
ranging from “They are Greek to me, so researchers must be really smart”
to “Typical for researchers in their ivory tower.” Often, there is little
engagement with the research itself. This is a failure: the purpose of theses
isn’t to stroke researchers’ egos or reinforce misconceptions of academia,
but to share knowledge, spark enthusiasm, and generate discussions. Non-
researchers can also be part of this discourse.

To make my thesis more accessible, I wrote the background section in a more
fluent style than typical academic writing, included illuminating illustrations,
and restricted jargon. This doesn’t necessarily make my thesis some light
reading, but I hope it lets you understand the overall story and sparks your
interest in my research area (and maybe even research overall).

My attempts to add a human touch to my thesis are just an example of how
to address the issues I raised. Nevertheless, I hope they inspire you to push
further, whether you are a researcher or not. Quickly start reading the next
chapter now. Once you get to know my research topic better, you might find
my call to “humanise” theses and “open black boxes” quite ironic.



Abstract

The rise of “big data” and artificial intelligence (AI) in countless application
domains comes with tremendous opportunities, but also entails challenges
concerning transparency and controllability. Well-performing AI models are
often “black boxes,” which means that understanding how they establish
outcomes is hard or even infeasible. Researchers in explainable AI (XAI)
therefore develop algorithm-centred and human-centred methods that try to
give people insights into the reasoning process of AI models. In turn, the
expectation is this allows people to better understand and trust AI models,
and thus make better-informed decisions. However, the body of experimental
human-centred research that backs up these expectations is limited. In addition,
it is unclear whether XAI techniques meet the insights required by different
user groups across application domains and contexts in the first place. Thus,
XAI studies with actual people and real-world data are urgent.

Our work focuses on designing, implementing, and evaluating visualisation-
supported explanations for AI systems in healthcare, agrifood, and education.
Following human-centred research practices, we study three research questions:
(1) How can visual explanations tailored to a target audience and application
domain make AI models more transparent?; (2) How can people control AI
models with additional feedback, supported by interactive visual explanations?;
and (3) How do visual explanations and control affect people’s perceptions of AI
systems, e.g., in terms of appropriate trust and understanding their outcomes?

Overall, we show how explainability can be established through visual analytics,
visualisation-supported justification, and visualisation-supported control. We do
this by reviewing the existing literature, developing new visual explanations and
control mechanisms in close collaboration with real end-users of AI systems, and
conducting user studies to better understand how our explainability methods
affect people’s perceptions of AI systems. Our work demonstrates the value of
human-centred and interdisciplinary research to design XAI solutions that align
with people’s needs and truly augment human capabilities with AI.
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Beknopte samenvatting

De opkomst van “big data” en artificiële intelligentie (AI) in talloze
toepassingsdomeinen brengt enorme kansen met zich mee, maar leidt ook
tot uitdagingen omtrent transparantie en controleerbaarheid. Goed presterende
AI-modellen zijn vaak “zwarte dozen”, wat betekent dat het moeilijk of zelfs
onmogelijk is om te begrijpen hoe ze tot resultaten komen. Onderzoekers
binnen verklaarbare AI (in het Engels: explainable AI, ofwel XAI) ontwikkelen
daarom algoritme- en mensgerichte methodes die mensen inzicht proberen
geven in het redeneerproces van AI-modellen. De verwachting is dat mensen
AI-modellen daardoor beter kunnen begrijpen en vertrouwen, en dus beter
geïnformeerde beslissingen kunnen nemen. Het experimentele mensgerichte
onderzoek dat die verwachtingen ondersteunt, is echter beperkt. Bovendien is het
onduidelijk of XAI-technieken überhaupt de inzichten bieden die verschillende
gebruikersgroepen in verschillende toepassingsdomeinen en contexten nodig
hebben. Er is dus dringend nood aan XAI-onderzoek met echte mensen en
gegevens uit de echte wereld.

Ons werk focust op het ontwerpen, implementeren en evalueren van visualisatie-
ondersteunde verklaringen voor AI-systemen in de gezondheidszorg, de agro-
industrie en het onderwijs. We bestuderen drie onderzoeksvragen op basis van
mensgerichte onderzoekspraktijken: (1) Hoe kunnen AI-modellen transparanter
worden gemaakt door visuele verklaringen die zijn afgestemd op de doelgroep en
het toepassingsdomein? (2) Hoe kunnen mensen AI-modellen controleren met
aanvullende feedback, ondersteund door interactieve visuele verklaringen? en
(3) Hoe beïnvloeden visuele verklaringen en controle mensen in hun perceptie
van AI-systemen, bijvoorbeeld in termen van gepast vertrouwen en begrip van
de output?

Samengevat: we laten zien hoe verklaarbaarheid van AI tot stand kan komen
via visuele analyse, visualisatie-ondersteunde rechtvaardiging en visualisatie-
ondersteunde controle. We doen dit door de bestaande literatuur te bestuderen,
nieuwe visuele verklaringen en controlemechanismes te ontwikkelen in nauwe
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samenwerking met echte eindgebruikers van AI-systemen, en gebruikersstudies
uit te voeren om beter te begrijpen hoe onze verklaringsmethodes de perceptie
van mensen over AI-systemen beïnvloeden. Ons werk demonstreert de waarde
van mensgericht en interdisciplinair onderzoek om XAI-oplossingen te ontwerpen
die aansluiten bij de behoeften van mensen en die menselijke capaciteiten
daadwerkelijk versterken met AI.
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Chapter 1

Introduction

We all know it: we live in the era of “big data” and artificial intelligence (AI). The
rise of AI is visible in countless application domains. For example, healthcare
applies AI to predict the onset of diseases, analyse medical imaging, or help
rehabilitate patients with acute and chronic conditions; agrifood uses AI to
precisely monitor crop growth, optimise irrigation, or support smart farming; and
education adopts AI to recommend learning materials, create new educational
content, or automatically assess learners’ mastery level. The list goes on and
keeps growing daily.

Amidst the AI hype, however, it is often overlooked that AI models do not always
behave as expected and that for some models it is even impossible to explain
in a human-understandable way how they obtain their outcomes. This can be
harmful in situations where people are using AI to make important decisions.
Therefore, we need techniques to understand how AI models “reason,” how they
“behave” in different contexts, and how people can steer them with domain
knowledge. Researchers in the field of explainable AI (XAI) are developing
such techniques. This is a hard yet exciting multidisciplinary challenge, because
besides algorithmic solutions, XAI needs to consider what people need. In the
end, it is namely people who use AI to augment their skills, and who need to
be able to rely on it.

Thus, this thesis is about AI, explanations, and people. Essentially, we will study
how outcomes of AI models can be explained to people while tailoring different
explainability solutions towards people’s needs, their experience with AI, and
the context in which they use AI. In particular, we will harvest the power of
data visualisation and study how explanations supported by visualisations affect
people’s perceptions of AI systems, for example, their trust in those systems

1



2 INTRODUCTION

and how well they understand them. In addition, we will study how people can
control AI models while being supported by visual explanations.

In total, this thesis presents 5 elaborate studies about XAI for adolescents
and adults, not coincidentally in the domains mentioned before: healthcare,
agrifood, and education. These studies investigate three main approaches for
explaining AI models: visual analytics, visualisation-supported justification, and
visualisation-supported control. The following chapters will clarify these terms.
Overall, the work presented in this thesis starts to disentangle the intricate ways
in which people calibrate their trust in AI systems, how visual explanations
can or cannot meet people’s actual needs, and how people interact with control
mechanisms for human-AI collaboration. Hopefully, this thesis inspires you and
many others to reflect more upon how XAI can or cannot be used to design
more trustworthy and controllable AI systems, and more generally, upon the
human side of AI.



Chapter 2

Background and Related Work

This chapter is a kind of prequel for the new research in this thesis: it introduces
important concepts and existing work. It will first cover some background
information about AI itself (Section 2.1) to prepare the motivation for why
we need AI to be explainable (Section 2.2). Section 2.3 will then discuss
why explainable AI is challenging: the problem is interdisciplinary and needs
both algorithmic and human-centred approaches (Sections 2.4 and 2.5). Once
you grasp what explainable AI is and how complex it is, you might wonder
how researchers evaluate explanations. Section 2.8 will answer your questions.
The final sections will introduce two approaches that lie at the heart of the
research in the next chapters: visualisation (Section 2.6) and control mechanisms
(Section 2.7) to facilitate explainability. Prepare for an enlightening start with
coffee machines, cute cats and chicken chicks, and risky pyramids!

2.1 What Is AI?

First things first. If we’re going to talk about artificial intelligence, we need to
agree on what that is. And I mean what is currently possible, not the often
dystopian technologies you typically see in science-fiction movies. This section
will give you a high-level taste of how AI algorithms work nowadays. We will
restrict ourselves to some basic concepts since an introduction to AI can be
a book on its own. In fact, there are many accessible examples already, for
example (Buijsman, 2020; Domingos, 2015; Mitchell, 2019). For now, I will only
present the aspects that are relevant to understand the rest of the story and
the motivation for this thesis.
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4 BACKGROUND AND RELATED WORK

To start off, let me immediately stress that artificial intelligence is a kind of
buzzword. The word “intelligence” misleads many people into expecting that
we’re dealing with something similar to human intelligence. That is not the
case at all. Essentially, AI is mostly mathematics and finding patterns in data.
Furthermore, AI models are specialised in narrow tasks, such as deciding whether
an image is a cat or a dog, translating sentences, converting speech to text,
playing chess or go, predicting the next numerical values in a time series, and so
on. Besides those tasks, they can do literally nothing and they cannot generalise
their “knowledge.” For example, AI models might excel at distinguishing cats
from dogs, but as such do not “learn” anything about mammals, different breeds,
the concept of having four legs, the emotional value humans attach to their
pets, or distinguishing tigers from wolves. Thus, AI models are the “ultimate
idiot savants” (Mitchell, 2019, p. 217). This is completely different from how
we as humans reason and learn.

So how does AI work? And what is the difference between an AI algorithm and
an AI model? Figure 2.1 shows a high-level representation of the AI lifecycle.
First, real world data or knowledge is processed according to some recipe,
which is the AI algorithm. This recipe then results in an AI model, a piece
of software that transforms given input into output. You could compare AI
models to coffee machines: when you put something in (coffee beans and water),
they spit something out (coffee – if you’re lucky). Following our metaphor, AI
algorithms are like the manufacturing process of these coffee machines. Finally,
people use AI models to obtain insights or make informed decisions about
something. For example, if an AI model is built to classify photos as cats or
dogs, you could give it a photo and it would output ‘cat’ or ‘dog’ (also when the
photo depicts something completely different, say, a lamp). Obtained insights
may lead to new data or knowledge, which can be used to create new AI models.

Some types of AI models, unlike real coffee machines, can create new
“knowledge” themselves and thus “learn.” For example, the AlphaGo
algorithm lets different models play Go against each other to gain
“knowledge” about which moves lead to victory (Fu, 2016). This is called
reinforcement learning (Russell and Norvig, 2021). Bare in mind, though,
that this “learning” is still different from human learning and only possible
because people actively guide and monitor it.

The AI algorithm is of course the key link in the above cycle. It is the place
where researchers apply clever logical and mathematical techniques to build
AI models specialised in a specific task. Broadly speaking, there are two main
streams in AI: symbolic and subsymbolic AI.

Symbolic AI algorithms combine and process small chunks of human



WHAT IS AI? 5

Figure 2.1: Abstract representation of the AI lifecycle. Real-world data or
knowledge is processed by a symbolic or subsymbolic AI algorithm to create an
AI model, which in turn can be used by people to transform a given input into
an output. (Credits: gear, coffee machine, mug, and people by flaticon.com.)

knowledge with logical rules and probabilistic reasoning. A famous example
is MYCIN (Shortliffe, 1977), a so-called expert system from the 1970s that
helped physicians diagnose and treat infections with hundreds of rules based on
knowledge collected from physicians. An advantage of symbolic AI models is
that they can explain their reasoning process by keeping track of which rules
they follow. The downside, however, is that they do not scale up to large or
difficult problems (Russell and Norvig, 2021).

Subsymbolic AI “learns” from examples. A subsymbolic algorithm needs tons
of human-labelled data, say, photos with a label ‘cat’ or ‘dog’, and then uses
this training data to build a model. This is done iteratively: for each example
in the training data, the model outputs a label and compares it to the true
label. Then, it modifies its parameters to decrease the difference, so it becomes
more likely to perform well on future examples (Russell and Norvig, 2021).
Famous subsymbolic algorithms are neural networks, for which Figure 2.2
shows a toy example. Roughly, the neural network converts an input image
into numbers and feeds them into the input layer, the hidden layers do many
computations, and finally, two numbers come out of the output layer. The input
image is classified as the label with the highest number; in this case ‘cat’. We
skip the mathematical details of the computations here, but what’s important
is that all connections are assigned a weight, that is, a number. These are
the parameters that the algorithm updates iteratively. In other words, neural
networks try to find weights such that they make the least mistakes for the
labelled training data. To conclude, it turns out that neural networks are
currently the most performant AI approach for many tasks. One advantage is

https://www.flaticon.com/free-icon/settings_565591
https://www.flaticon.com/free-icon/coffee-machine_3019883
https://www.flaticon.com/free-icon/coffee-machine_1268709
https://www.flaticon.com/free-icon/talking_3002662
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Figure 2.2: A neural network classifies an example image by doing tons of
computations, using the weights of its connections. These weights are optimised
by the algorithm. (Credits: animals by flaticon.com, and picture of cat Schrödi
by Ann De Turck. Schrödi received chicken treats as a reward for his modelling.)

that similar techniques yield performant models in different contexts. Yet, real
neural networks can have billions of connections, making it unfeasible for us to
understand why they achieve a certain output: we only see billions of weights.

2.2 Why We Need Explainable AI

AI models are often applied as black boxes: you have no idea what happens
inside; you just put something in and wait until something “magically” comes
out (see Figure 2.3 top). If you like the output, you can happily move on with
your life. But what if you are suspicious, surprised, or curious about what
the model did behind the scenes or why it didn’t yield another output (see
Figure 2.3 bottom)? In that case, you need an explanation for the outcomes.
Put differently, the model should be explainable or support explainability.
Getting an explanation is often desirable for at least three reasons: AI models
do not always behave as expected, peeking inside black boxes is not always
possible or useful, and explainability is becoming a legal right.

AI Does Not Always Behave As Expected

Let’s start with a simple example. Say you have an AI model that detects the
colour of animals. As shown in Figure 2.4, the model seems to do a perfect

https://www.flaticon.com/packs/wild-animals-6


WHY WE NEED EXPLAINABLE AI 7

Figure 2.3: AI models are often black boxes: give it some input and wait for the
output. Top: The rationale behind that output, however, is unclear. Bottom:
Unexpected outputs sometimes occur without obvious reasons. (Credits: egg
by Darius Dan; chick by Smashicons; gear by flaticon.com.)

job: the gorilla is grey, the goat is green, the bear is brown, the bat is blue,
and the rabbit is red. But then, all of a sudden it says a black wolf is white.
What’s going on? You might see where this is going: the model wasn’t detecting
colours at all; it was just generating a colour that starts with the same letter
as the given animal. It made many lucky guesses at first but ultimately failed.
This toy example illustrates that models can seem highly performant for the
wrong reasons. As a consequence, we could fall into the trap of believing that
such models are “intelligent” even though they are not.

The example above might seem far-fetched and rather innocent. However,
unexpected behaviour of AI models can have severe real-life implications as well.
Here are some examples:

• In 2014, Amazon developed an algorithm to screen anonymous resumes of
job candidates to predict who was likely to be hired. They found it could
still detect the candidates’ gender based on their word use and mostly
flagged men as suitable (Christian, 2021). This clearly reinforced sexism.

https://www.flaticon.com/free-icon/egg_1461478
https://www.flaticon.com/packs/easter-avatars-1
https://www.flaticon.com/free-icon/settings_565591
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Figure 2.4: A hypothetical AI model correctly detects the colour of five animals,
but then makes a strange mistake. (Credits: animals by Vitaly Gorbachev.)

• An algorithm that classified images of melanoma as either cancerous
or non-cancerous turned out to classify many non-cancerous images by
relying on visible artefacts, for example, medical instruments. During its
training, the algorithm learnt these artefacts only show up in images of
non-cancerous melanoma (Boggust et al., 2022). If deployed in practice,
such an algorithm could have left many cancerous melanomas undetected.

• In 2015, Google started to automatically tag photos in its Photos app.
While their algorithm detected Caucasian and Asian faces well, it tagged
a selfie of two African Americans as “gorillas” (Mitchell, 2019). It needs
no further argumentation that such labelling is completely inappropriate.

• An algorithm to identify objects in an image could be fooled by slightly
adapting images with changes invisible to the human eye. After
the changes, the algorithm confidently changed its classification from
the correct “bus” to “ostrich,” for example (Mitchell, 2019; Szegedy
et al., 2014). Although funny, this approach could be used to mislead
the algorithm for malicious purposes. Similarly, when stickers are
attached to traffic signs, self-driving cars might not recognise the signs
anymore (Eykholt et al., 2018).

There are many more of these examples and cautionary tales (Branwen, 2011),
but you get the point. Both my coloured animals and the more serious examples
underline that using AI models as black boxes is not always desirable. Instead, AI
models should be able to explain their outcomes, such that we can check whether

https://www.flaticon.com/packs/wild-animals-6
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they work as expected and whether unexpected outcomes are (inevitable) rare
side effects or a sign of larger severe shortcomings of the algorithm. In turn,
this “explaining to control” could be a stepping stone towards improving the
AI model, that is, “explaining to improve” (Adadi and Berrada, 2018).

Peeking Inside Black Boxes Is Not Always Possible or Useful

Maybe you are wondering: why not “peek inside black boxes” to see what they
are doing? After all, you recall from Section 2.1 that AI models are just doing
complex computations, not magic. Here are two reasons why “peeking” often
doesn’t work or is not enough.

First, AI models developed and used by companies are often protected by
copyrights or intellectual property measures, which does not allow for checking
their details and underlying training process. For example, banks might not
share how their algorithms determine which clients get a loan, music streaming
companies might not share how their algorithms recommend songs that match
clients’ preferences, and manufacturers of self-driving cars might not share
how their cars process sensor inputs to drive autonomously. In other words,
“peeking” is literally impossible for outsiders. To still get insights into protected
algorithms, there is a need for explanations that focus on algorithms’ behaviour,
regardless of their technical details. Section 2.4 will discuss how so-called
model-agnostic XAI techniques deal with this problem.

Second, the currently most performant and thus widely applied AI algorithms
are subsymbolic in nature and are being trained on huge amounts of data.
Remember from Section 2.1 that such algorithms are inherently complex or
even infeasible to understand. Take a trained neural network, for example.
It is not easy to translate its weights into rules that are understandable by
humans because they do not stand for human-interpretable concepts in the first
place (Mitchell, 2019). Of course, you might argue that “easier” AI algorithms
could bring consolidation. Unfortunately, there seems to be a trade-off today
between performance and explainability (Barredo Arrieta et al., 2020; Gunning
and Aha, 2019). Figure 2.5 shows how the AI techniques that currently yield
the most performant models (neural networks, tree ensembles, and support
vector machines) are also the most complex and therefore the least explainable.
However, some researchers point out that this trade-off is no definite truth:
there might be algorithms that are both very performant and interpretable (Liao
and Varshney, 2022; Rudin, 2019). In the long run, it might be better to stop
explaining black-box algorithms for supporting high-stakes decisions and instead
focus on developing performant yet interpretable algorithms (Rudin, 2019). But
as long as black-box AI models are being applied in practice, explanations seem
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Figure 2.5: The apparent trade-off between performance and explainability:
more performant AI algorithms are typically less explainable. XAI tries to push
the orange dots towards the pink area, which indicates both high performance
and high explainability. (Credits: image based on (Gunning and Aha, 2019).)

crucial to reasonably assess their strengths and weaknesses. At least they push
such algorithms more towards the desirable pink area in Figure 2.5.

Researchers sometimes call black-box AI models opaque. The two
reasons above correspond to two out of three forms of opacity defined
in (Burrell, 2016), namely “opacity as intentional secrecy” and “opacity
due to scale and how algorithms operate,” respectively. Section 2.5 will
introduce the third form: “opacity as technical illiteracy.”

Explainability Is Becoming a Legal Right

The call for explainability is gradually being reinforced by upcoming legislation,
ethical guidelines, and regulations on AI use. The European Union has put
itself at the forefront of regulating AI use and automated decision-making in
general, protecting people against potentially harmful use of AI technologies.
Back in 2016, for example, the adopted General Data Protection Regulation
(GDPR) already included a right to explanation (Goodman and Flaxman,
2017; Hamon et al., 2022). So, if an algorithmically made decision significantly
affects you, you have the right to ask for an explanation. Very recently, in
June 2023, the European Parliament also passed a draft law known as the
AI Act (Satariano, 2023). Figure 2.6 shows how this draft law proposes to
categorise AI technologies into 3 risk levels: minimal or no risk, high risk, or
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Figure 2.6: Classification of AI systems into 3 risk levels, as proposed in the
European AI Act. (Credits: image inspired by (Sioli, 2021); faces by justicon.)

unacceptable risk (Commission, 2023). Most AI technologies will be permitted
without restrictions, but AI for sensitive contexts (e.g., education, medicine, and
law) will need to comply with specific requirements. AI applications that conflict
with EU values will even be banned entirely; for example, social scoring and
technologies for manipulation or exploitation. In addition, the AI Act proposes
to install supervisory authorities that handle complaints from people affected
by AI. Even though these first steps towards AI legislation are sometimes met
by criticism (Laux et al., 2022) and concerns about potential restrictions for AI
innovation, they underline the urgency of explainable AI.

The AI Act proposes requirements around increasing transparency
and supporting human oversight, but this neither enforces XAI nor bans
black-box AI (Panigutti et al., 2023). Rather, the transparency requirement
demands that AI systems are clearly documented and contain instructions
for use, including the system’s limitations and capabilities. Furthermore,
the requirement of human oversight encompasses that humans should be
able to monitor the system’s operation, should be aware that they might
tend to overly rely on the AI system, and should be able to correctly
interpret the system’s outcomes. What’s important here is that XAI can
facilitate all these requirements, but it is not the only solution.

https://www.flaticon.com/packs/emoji-cartoon-face-2
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Figure 2.7: XAI-related papers, conference proceedings, and book chapters
with the words ‘explainable’, ‘interpretable’, ‘transparent’, ‘understandable’, or
‘intelligible’. Based on a search on Scopus with the query (understandable OR
explainable OR interpretable OR transparent OR intelligible) AND
(“artificial intelligence” OR “machine learning” OR “recommender
system*” OR “deep learning”).

2.3 XAI, It’s Complicated

The above arguments pro explainability make the challenge clear: we need
explainable AI, also known as XAI. Overall, the goal of XAI is to come up
with techniques that allow humans to understand the rationale of AI models,
characterise their strengths and weaknesses, and foresee how they will behave in
the future (Gunning and Aha, 2019). Researchers poetically call this “opening
the black box.” The call for human-understandable and simple algorithms is as
old as AI itself (Freitas, 2014; Holte, 1993), but especially the past few years were
filled with enthusiasm. Figure 2.7 shows how the attention for XAI exploded:
XAI research was on the back-burner until 2002, but the number of scientific
publications has been increasing dramatically since then. The consensus so far:
XAI is a tough nut to crack.

A first challenge for XAI is that there are no widely accepted definitions for terms
such as ‘explanation’ and ‘understanding’ (Doshi-Velez and Kim, 2017; Lipton,
2018). The same actually holds for the whole of AI: what ‘intelligence’ means is
a deep philosophical question (Legg et al., 2007). Most researchers are pragmatic
about this and use different terms interchangeably; some of the most common
include ‘explainability’, ‘interpretability’, ‘transparency’, ‘understandability’,
‘intelligibility’, ‘explicability’, and ‘comprehensibility’ (Adadi and Berrada, 2018;
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Barredo Arrieta et al., 2020). Figure 2.7 shows that researchers have historically
been using ‘interpretability’ the longest, but ‘explainability’ seems to be taking
over since DARPA launched its XAI program in 2017 (Gunning and Aha, 2019).
These days, researchers seem to typically use ‘interpretability’ when they are
talking about making AI models transparent by design instead of black-box,
and ‘explainability’ when they mean justifying an AI model’s behaviour to end-
users (Hamon et al., 2022; Panigutti et al., 2023). In this way, interpretability
is a passive characteristic: any AI model is inherently interpretable or not to
a certain degree (Barredo Arrieta et al., 2020). Explainability, however, is an
active characteristic: AI models are explainable when they do something to
clarify or detail their internal functions such that humans can understand them
more easily (Barredo Arrieta et al., 2020). Thus, the difference boils down to
whether humans are involved. This relates to the next challenge.

A second challenge for XAI is that explainability is a multidisciplinary problem.
It can be tackled from at least two perspectives: an algorithmic and a human-
centred perspective. Take a look at Figure 2.8. The blue box focuses on the
AI system, which involves three parts: the data used for training, the trained
AI model, and the outcome. Explanations can focus on each of those parts.
Yet, depending on the focus, different explanation techniques are necessary.
Mind that these techniques are essentially mathematical in nature. Section 2.4
will discuss these algorithmic XAI approaches in detail. Next, the yellow box
focuses on the people using an AI system. Explanations can help them fulfil a
specific need, such as assessing the system’s fairness or calibrating their trust
in the system. The tricky part is that different target audiences have different
explainability needs: what computer scientists consider a useful explanation
could be incomprehensible for teenagers, for example. In addition, humans
are complex creatures who perceive things differently for all kinds of reasons,
have different perspectives on what “good” explanations are, have different
attitudes towards AI and technology in general, and sometimes hold inconsistent
or irrational beliefs. Section 2.5 will discuss how XAI research tries to carve a
way through this tricky labyrinth of human perceptions and values.

A third challenge for XAI is a result of the first two: the research field is
pretty scattered. Researchers who focus on algorithms have been working rather
isolated from researchers who focus on humans, and vice versa (Abdul et al.,
2018). In addition, explainability is related to many intertwined topics such as
trust, fairness, bias, causality, accountability, privacy, and reasoning (Abdul
et al., 2018). Figure 2.9 shows how research into these topics is often isolated.
For example, interpretable machine learning and algorithmic fairness are closely
connected because of their focus on algorithms, but there is less overlap with
human-centred concepts such as trust and interaction, which are studied more
in the context of recommender systems and intelligent agents and systems.
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Figure 2.8: XAI is linked to both algorithmic and human aspects. (Credits:
image based on (Afchar et al., 2022), egg by Darius Dan; chick by Smashicons;
gear, dinosaur, and people by flaticon.com.)

2.4 Algorithmic XAI approaches

Let’s start with something you might not realise: although AI techniques such
as neural networks are demonstrably powerful, we don’t yet fully understand
how they work and cannot guarantee they will work in new contexts (Lipton,
2018). And “we” also includes AI experts. That’s right, “no one really knows
how the most advanced algorithms do what they do” (Knight, 2017). This does
not mean AI algorithms are plotting behind our backs to dominate us; it means
it is mathematically unclear how neural networks “learn” to generalise. In other
words, researchers see their complex AI algorithms yield effective models, but
they don’t know why. Compare it to anaesthesia for medical operations: while
everyone who has been fully sedated for surgery knows it is effective, there is
still a lot unknown about why anaesthesia works (TED-Ed, 2015). But figuring
out the mathematics behind AI is hard. Now what?

Fortunately, researchers have developed tons of algorithmic techniques that give
clues about what is happening insides black boxes (Adadi and Berrada, 2018;
Barredo Arrieta et al., 2020; Du et al., 2019; Guidotti et al., 2019b; Montavon

https://www.flaticon.com/free-icon/egg_1461478
https://www.flaticon.com/free-icon/chick_2632839
https://www.flaticon.com/free-icon/settings_565591
https://www.flaticon.com/free-icon/velociraptor_472751
https://www.flaticon.com/packs/avatar-17
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Figure 2.9: Network of different research topics related to XAI. Each circle is
a paper and lines connect papers when one cites the other. Tightly connected
papers form a cluster and the further clusters are away from each other, the
more isolated their topics are. (Credits: image from (Abdul et al., 2018).)

et al., 2018; Stiglic et al., 2020; Vilone and Longo, 2020; Zhang and Chen, 2020).
To understand these techniques in detail, you would need technical knowledge
about different kinds of AI algorithms, but that would lead us too far. This
section will therefore only present the overall ideas. Figure 2.10 shows a general
classification of algorithmic XAI approaches: to explain black boxes, we can
either turn towards inherently interpretable AI or do reverse engineering. For
the latter, we can explain the whole model or single outcomes, either in a
model-specific or a model-agnostic way.

Inherently Interpretable AI

Remember the suggestion to “peek inside black boxes” in Section 2.2. Sometimes
it makes sense to do so: when an AI model is inherently interpretable, it can
justify its outcomes and no further explanation is needed. In other words, a
model can itself be an explanation (Afchar et al., 2022). Researchers speak of
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Figure 2.10: Classification of algorithmic XAI approaches. (Credits: image
inspired by (Guidotti et al., 2019b); egg by Darius Dan; chicks by Smashicons;
cat by flaticon.com.)

“glass” (Abdul et al., 2018; Sokol and Flach, 2018), “white” (Herm et al., 2022;
Lundberg et al., 2019) or “transparent boxes” (Barredo Arrieta et al., 2020;
Gilpin et al., 2018), and sometimes even “ante-hoc explainability” (Antoniadi
et al., 2021; Vilone and Longo, 2020). Two classic examples are decision trees
and k-nearest neighbours (Barredo Arrieta et al., 2020).

Decision tree algorithms do what they suggest: they build “trees” to support
decision-making. You have already encountered a “tree” in Figure 2.10; to
categorise an algorithmic XAI approach, you followed the arrows from the top
box until you got to an end. Decision tree algorithms construct such trees based
on data. Say you have lots of data about whether readers like thesis texts,
together with information about the theses’ number of pages, average number
of images per chapter, topic, and so on. Then, the algorithm will construct a
tree such that it fits the data as well as possible. For example, the end result
could look like the decision tree in Figure 2.11a. Given a new thesis text, the
decision tree will predict that people like it whenever it has less than 100 pages,
studies cats, or has at least five images per chapter on average. I made up this
decision tree but it illustrates how it inherently justifies its outcomes: to know
what led to a certain outcome, simply follow the path in the tree that led to it.

Similarly, k-nearest neighbours algorithms make decisions in an intuitive way.

https://www.flaticon.com/free-icon/egg_1461478
https://www.flaticon.com/packs/easter-avatars-1
https://www.flaticon.com/free-icon/kitty_763760
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(a) decision tree (b) k-nearest neighbours

Figure 2.11: Two examples of inherently interpretable AI: (a) decision
trees literally show the path towards decisions, and (b) k-nearest neighbours
algorithms decides based on the labels of the k most similar data points.

Say you again have a dataset on thesis texts, where each thesis has a label ‘like’
or ‘dislike.’ For any new thesis, the algorithm will simply look for the k most
similar theses in the dataset. These are the neighbours. Then, the algorithm
uses the label that is most frequent among the neighbours as prediction. In
general, the number k is fixed and chosen beforehand. In Figure 2.11b, for
example, the algorithm uses k = 5 and predicts that people will like the new
blue thesis text, because most neighbours have a ‘like’ label (3 out of 5). To
conclude, k-nearest neighbours algorithms don’t need additional explanations
because every outcome is fully determined by its neighbours in the dataset.

Besides decision trees and k-nearest neighbours algorithms, there are 4
more families of inherently interpretable AI techniques: linear or logistic
regression, rule-based learners, general additive models, and Bayesian
models (Barredo Arrieta et al., 2020). Section 2.5 will make some critical
remarks on how transparent all these AI techniques really are for humans.

Reverse Engineering

Not all AI algorithms yield inherently interpretable models, however. Section 2.2
explained some AI models are inherently complex, which is why it isn’t useful
to look at their insides. In such cases, the only thing to work with are inputs
and outputs. By studying how these are related, the hope is to learn something
about what the AI model is doing. This is called reverse engineering (Guidotti
et al., 2019b) or post-hoc explainability (Adadi and Berrada, 2018; Afchar et al.,
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2022; Du et al., 2019). Some researchers, however, object against the latter term
because ‘explainability’ may be misleading: reverse engineering approximates
the original model, but there is no guarantee it captures what the model is really
doing (Rudin, 2019). Think of the example in Figure 2.4: based on the first
few inputs and outputs, you might approximate the model by saying it detects
colours in images, but that’s not what it does at all. Researchers have developed
countless techniques to reverse engineer AI models (Adadi and Berrada, 2018;
Barredo Arrieta et al., 2020; Guidotti et al., 2019b; Stiglic et al., 2020), which
can be classified in two ways. First, explanations can have different scopes,
ranging from single outcomes to the whole model. Second, some explanations
only work for models of specific AI algorithms, while others can be applied to
any type.

Model vs Outcome Explanations. The first way to classify algorithmic XAI
methods relates to their scope, that is, how many outcomes the resulting
explanations cover. Explanations covering all possible outcomes are called model
explanations or global explanations; they clarify the algorithm’s overall logic.
Explanations covering only a single outcome are called outcome explanations
or local explanations; they clarify the algorithm’s outcome for a single input.
Between these two extremes, it is also possible to learn more about how a model
behaves by investigating multiple inputs and corresponding outputs through
model inspection. This implies that the ‘global’ and ‘local’ categories are not
strictly separated: you may learn something about a model on a global level by
looking at multiple outcome explanations on a local level (Afchar et al., 2022).

Model-Specific vs Model-Agnostic Explanations. The second way to classify
algorithmic XAI methods relates to which AI models they can be applied to.
Some methods only work for a specific type of model, whereas others work for
any model. The former XAI methods are called model-specific; the latter model-
agnostic. Model-agnostic explanations fall into four different types: visualisation,
knowledge extraction, influence methods, and example-based methods (Adadi
and Berrada, 2018). For example, visualisation gives insights in the AI model’s
behaviour by showing pairs of inputs and outputs. Visualisation is a strong
technique to uncover patterns and will be further discussed in Section 2.6.

Given how we defined ‘AI algorithm’ and ‘AI model’ in Section 2.1, the
terms ‘model-specific’ and ‘model-agnostic’ are slightly confusing. One AI
algorithm can generate endless models when given different data, so it would
be weird if model-specific explanations only worked for a single model. In
reality, model-specific explanations work for any model created by a specific
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[260, 482] [259, 94] [430, 165, 395, 446]

[217, 453, 21, 108, 462] [456, 529, 449, 389] [427, 335, 418]

• Decision tree: Approximate the AI model with a decision tree.
• Decision rules: Approximate the AI model with decision rules.
• Feature importance: How strongly do features determine outcomes?
• Saliency mask: Highlight parts of texts or images that influenced the outcome.
• Partial dependence: How do outcomes relate to inputs with reduced features?
• Sensitivity analysis: How do outcomes change when inputs change?
• Activation maximisation: Are there patterns in which neurons are being

activated in neural networks for different inputs?

Figure 2.12: Seven general algorithmic XAI techniques together with some
examples that realise them, grouped by their scope and which algorithms they
explain. Decision trees can be converted to decision rules by listing all decision
paths. (Credits: references and classification are from (Guidotti et al., 2019b).)

type of algorithm, so it would be better to call them “algorithm-specific.”
For consistency, we would then talk about “algorithm-agnostic” techniques.

Figure 2.12 shows seven algorithmic XAI approaches grouped according
to the two categorisations above: decision trees, decision rules, feature
importance, saliency masks, partial dependence, sensitivity analysis, and
activation maximisation. Most of these approaches occur at different places
because they can be implemented in several ways. For example, decision trees
can approximate any whole AI model (global, model-agnostic), but also smaller
parts of a specific model (model inspection, model-specific).

2.5 Human-Centred XAI Approaches

Research into algorithmic XAI methods is extremely relevant, but it is also
important to remember these methods are employed to support humans.
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Explainability is not a strictly algorithmic characteristic, but lies in how people
perceive the explanation (Liao and Varshney, 2022). Many human factors
affect how people assess an explanation: the person’s technical training and
experience with AI, the questions that they want to answer, the context in
which an AI-supported decision has to be made, and so on. The following
sections will discuss these aspects in more detail.

Sometimes Interpretable Isn’t Really Interpretable

Seeing the insides of AI models doesn’t necessarily mean understanding
them (Ananny and Crawford, 2018). We already saw for the case of neural
networks that seeing countless weights doesn’t help us understand how the
networks “reason”: we cannot attach meaning to those weights and our minds
cannot simulate (Lipton, 2018) all computations that involve those weights.

Similarly, algorithmic XAI approaches can make AI models interpretable in
principle, but that isn’t helpful in practice if people don’t find the explanations
useful for the insights they are looking for, or if they still cannot simulate them.
For example, decision trees are inherently interpretable and are therefore popular
to approximate AI models with (see Figure 2.12). However, decision trees can
still be impossible to grasp if their decision paths contain hundreds of conditions.
The same holds for other “interpretable” AI models such as linear models: if
they contain hundreds of parameters, they are not simulatable (Lipton, 2018).
Overall, if someone cannot simulate an AI model based on an explanation
within a reasonable timespan, the explanation isn’t really helpful. Yet, what
someone considers reasonable is subjective and can only be uncovered with
human-centred approaches.

How People Explain Things

Human-centred XAI draws lessons from the social sciences, amongst others,
to better align explanations for AI models with how people define, generate,
select, present, and evaluate explanations in general (Miller, 2019). Let’s briefly
discuss three main lessons presented in (Miller, 2019).

First, explanations are typically contrastive: people don’t ask why a specific event
has taken place, but rather why another event didn’t take place instead. This
inspired XAI researchers to develop algorithmic techniques called counterfactual
explanations, which compute how much a given input should hypothetically and
realistically change to change the original model outcome to a desired one (Dandl
et al., 2020; Goyal et al., 2019; Guidotti et al., 2019a; Kaffes et al., 2021; Keane
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and Smyth, 2020; Laugel et al., 2019; Moore et al., 2019; Pawelczyk et al., 2020;
Poyiadzi et al., 2020; Sharma et al., 2020; Spooner et al., 2021; Wachter et al.,
2017; Wang et al., 2021; Yang et al., 2020b). In turn, human-centred XAI
researchers study how these counterfactual explanations help decision-making
in practice (Barocas et al., 2020; Kasirzadeh and Smart, 2021; Shamma et al.,
2022) and meet people’s needs (Riveiro and Thill, 2021; Shang et al., 2022).

Second, explanations are selected: instead of explaining an event by exhaustively
listing all its causes, people typically select one or two causes and consider those
to be the explanation. For example, if a fan shouts during a tennis rally right
before a player hits the ball out, we might say that the miss was caused by
the shouting. Doing so, however, we may ignore other contributing causes: the
player was extra tensed because they were about to win the championship, there
was a slight breeze that blew the ball off course, the player wasn’t distracted by
the shouting but by the fan’s ugly sweater, the fan was shouting the name of the
player’s secret lover, and so on. In XAI, researchers call selected explanations
justifications. Justifications explain why specific model outcomes are “good”
by providing some easy-to-understand insights about how they were obtained,
without covering the full technical reasoning process (Adadi and Berrada, 2018;
Ehsan et al., 2019; Vig et al., 2009; Wang et al., 2019a). Not throwing all
technical details at “technically illiterate” (Burrell, 2016) people is important
because they might be alienating instead of illuminating (Cramer et al., 2008).

Third, explanations are social: they are part of a conversation between two
parties, where one party is trying to transfer information about an event’s cause
to another party (Lewis, 1986, p. 217). Important in this conversation is that
the explaining party adapts to the other party’s current beliefs and knowledge.
For example, if AI developers explain their new algorithm to colleagues, they
dive into the technical and mathematical aspects because they know their
colleagues have the required background for that. But to people with little
AI knowledge, AI developers might explain that their algorithm is like the
manufacturing process of a coffee machine (assuming they like my metaphor in
Section 2.1). For XAI, this means explanations need to be tailored to whoever
is receiving them. The next subsection covers how that can be done.

There are more relevant lessons to be drawn from how people explain
things, including that explanations focus on the abnormal, are truthful,
and refer to causes instead of probabilities (Miller, 2019; Molnar, 2021).
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Different People, Different Needs

Different people have different explainability needs (Ehsan and Riedl, 2020).
To address this, Figure 2.13 shows how XAI researchers have proposed to
categorise people in at least three broad groups linked to specific explainability
needs (Hind, 2019; Langer et al., 2021; Mohseni et al., 2021):

• AI novices are people who are impacted by AI systems, but have little
to no expertise in the technicalities of AI. These laypeople in terms of AI
mainly require explanations to get a better overall understanding of an
AI model, so they can assess whether it treats them fairly, they can trust
its outcomes, and it protects their data privacy.
Examples: patients, loan applicants, teachers, regulatory bodies.

• Data experts are data scientists and domain experts who use AI systems
for analysis, research, or decision-making, but typically lack expertise in
the technicalities of AI. Similar to AI novices, they require tools to assess
model uncertainty and trustworthiness, but these tools should be more
advanced so they can also tune and compare AI models.
Examples: physicians, loan officers, managers, judges, social workers.

• AI experts build and deploy AI models or develop algorithmic XAI
techniques. They need to interpret their models to know whether they
are working as expected and can be improved.
Examples: AI researchers, engineers.

Some researchers further refine the user groups and their explainability
needs (Hind, 2019; Langer et al., 2021; Suresh et al., 2021). For example,
regulators such as ethicists, lawyers, and governments supervise how all
other groups interact with AI systems and are mainly concerned about
trustworthiness and accountability.

The classification above is rather coarse (Liao and Varshney, 2022): groups
overlap and especially within the group of AI novices the level of AI expertise can
vary quite a lot depending on people’s degree or interests. A more fine-grained
approach is to directly identify people’s explainability needs with questions
related to possible insights in AI models (Liao et al., 2020, 2021; Liao and
Varshney, 2022). Figure 2.14 shows how these questions can cover what kind of
data was used to train the model, what it outputs, how accurate the outcomes
are, how they were obtained, how the outcomes relate to the input, why
the outcomes weren’t different, how the input should change to change the
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Figure 2.13: Coarse classification of different user groups with respect to
AI, together with most common design goals for explainability and evaluation
measures. (Credits: image from (Mohseni et al., 2021).)

outcomes, how much the input can change without changing the outcomes,
what the outcomes would be for different input, and so on.

Human-Centred Design for XAI

At this point, you might have realised there is no one XAI technique to rule them
all. Alas, “explainability is not as simple as providing a nice explanation and
all is well” (Weber et al., 2021). And matters are even more complicated. The
same people can have different explainability needs in different contexts (Suresh
et al., 2021). In sum, different people in different contexts need different
XAI solutions. For example, during analysis, nurses who use an AI model for
monitoring patients at risk might need advanced insights into its performance
across the whole pool of patients. However, during a consultation, these insights
need to be focused on how one patient can lower their risk and they need to be
understandable for the patient too. Thus, it is important to know who needs to
know what when, and what explanation types are adequate (Dhanorkar et al.,
2021). Moreover, explanations can be represented in many forms, including as a
text, a visualisation (see Section 2.6), or a mix of both (Szymanski et al., 2021).
To find appropriate explanation techniques and formats for specific people
in their specific context, XAI researchers who build explanation interfaces
must involve them in a human-centred design process (Abras et al., 2004). In
conclusion, “XAI presents as much of a design challenge as an algorithmic
challenge” (Liao and Varshney, 2022).
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Data
What kind of data was the system trained
on?
What is the source of the training data?
How were the labels/ground-truth produced?
What is the sample size of the training data?
What dataset(s) is the system NOT using?
What are the potential limitations/biases of
the data?
What is the size, proportion, or distribution of
the training data with given feature(s)/feature-
value(s)?

Output
What kind of output does the system
give?
What does the system output mean?
What is the scope of the system’s capability?
Can it do. . . ?
How is the output used for other system
component(s)?
How should I best use the output of the system?
How should the output fit in my workflow?

Performance
How accurate/precise/reliable are the
predictions?
How often does the system make mistakes?
In what situations is the system likely to be
correct/ incorrect?
What are the limitations of the system?
What kind of mistakes is the system likely to
make?
Is the system’s performance good enough
for. . . ?

How
How does the system make predictions?
What features does the system consider?
Is [feature X] used or not used for the
predictions?
What is the system’s overall logic?
How does it weigh different features?
What kind of rules does it follow?
How does [feature X] impact its predictions?
What are the top rules/features that determine
its predictions?
What kind of algorithm is used?
How were the parameters set?

Why
Why/how is this instance given this
prediction?
What feature(s) of this instance determine the
system’s prediction of it?
Why are [instance A and B] given the same
prediction?

Why not
Why is this instance NOT predicted to
be [a different outcome]?
Why is this instance predicted [P instead of a
different outcome Q]?
Why are [instance A and B] given different
predictions?

How to be that
How should this instance change to get a
different prediction?
What is the minimum change required for this
instance to get a different prediction?
How should a given feature change for this
instance to get a different prediction?
What kind of instance is predicted of [a
different outcome]?

How to still be this
What is the change permitted for this
instance to still get the same prediction?
What is the range of value permitted for a given
feature for this prediction to stay the same?
What is the necessary feature(s)/feature-
value(s) present or absent to guarantee this
prediction?
What kind of instance gets the same predic-
tion?

What if
What would the system predict if this
instance changes to. . . ?
What would the system predict if a given
feature changes to. . . ?
What would the system predict for [a different
instance]?

Others
How/why will the system change/adapt/im-
prove/drift over time? (change)
Can I, and if so, how do I, improve the system?
(improvement)
Why is the system (not) using a given
algorithm/feature/rule/dataset? (follow-up)
What does [a machine learning terminology]
mean? (terminological)
What are the results of other people using the
system? (social)

Figure 2.14: A slightly adapted version of the “XAI question bank,” which
contains 10 categories of prototypical questions to elicit people’s explainability
needs. These can then be used to select algorithmic XAI methods that align
with the categories (Liao et al., 2020, 2021; Liao and Varshney, 2022).
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This is where human-computer interaction or HCI comes in. Briefly, HCI is
an interdisciplinary research field that connects computer science, social sciences,
and any other domain that applies technology (Carroll, 1997; Olson and Olson,
2003; Shneiderman et al., 2016). HCI researchers study how interfaces can be
designed and tailored to specific end users or application contexts to improve
user experience, for example. To do that, HCI researchers work closely together
with end users to discover their personal and context-specific needs. In the
scope of XAI, this translates to investigating what effective explanations look
like and which factors affect their efficacy.

2.6 Visualisation for XAI

So far, we have covered many general examples of explanations. This section
focuses on how visualisation can compactly represent lots of information in an
explanation.

You probably know the saying: “A picture tells more than a thousand words.”
We humans are incredibly skilled at quickly processing visual information: we
can promptly recognise patterns, connect them to meaning, and act upon it.
The research domain of information visualisation taps into this phenomenon
and designs visual representations of data to help people carry out tasks more
effectively (Munzner, 2014). Here, ‘visualisation’ is not just an umbrella term
for pictures or graphics such as the schemes in Figure 2.1 and Figure 2.2. It
means representing information in a more abstract way; for example, as Venn
diagrams (see left part of Figure 2.5), scatter plots (see right part of Figure 2.5
and Figure 2.11b), stacked area charts (see Figure 2.7), networks (see Figure 2.9
and Figure 2.11a), and so on.

Using visualisations for XAI is useful when explanations still contain a lot of
information. By representing that information as a well-designed visualisation,
you can effectively process it. Yet, the design space for visualisation is huge
and whether a visualisation is ‘good’ depends on the task at hand and the
target audience (Munzner, 2014). This is why information visualisation fits
well with the philosophy of human-centred design, which we covered in the
previous section. The following subsections present how explanations and
visualisations can be combined for different target audiences, either with rather
simple visualisations or with more complex interactive dashboards. In this thesis,
I am using the terms ‘visual explanation’ and ‘visualisation-supported
explanation’ interchangeably; the latter to stress that visual explanations in
this thesis are more than highlighted regions in images (Chen et al., 2019) or
image descriptions (Hendricks et al., 2016).
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Visual Explanations

Figure 2.15 shows five examples of visual explanations. First, Figure 2.15a
explains how an AI model predicted which life-insurance plan is suitable
for a client by depicting how strongly different parameters were taken into
account (Bertrand et al., 2023). Thus, the underlying algorithmic explanation
technique is feature importance. Here, the model predicted a rather safe plan and
the bar chart in the middle shows that this is mainly due to the client wanting
to invest a large proportion of their assets. Second, Figure 2.15b is an example
of sensitivity analysis (Szymanski et al., 2021). An AI model predicts how many
seconds a reader would need to finish reading a news article based on parameters
such as word count and whether the article contains pictures. The line graph
shows how much the prediction would change according to how one of these
parameters changes: the predicted time increases when the word count increases
and vice versa. Third, Figure 2.15c visualises a why explanation: the bars and
links show how someone’s list of liked songs and the context of those songs led to
recommended songs (Bostandjiev et al., 2012). Fourth, Figure 2.15d is similar to
Figure 2.15a: it visualises feature importance information for houses (Lundberg
and Lee, 2017). However, the bars are replaced by dots and many houses are
plotted together, additionally colouring the dots based on their underlying
feature value. The visualisation shows, for example, how high values for the
second feature (RM = number of rooms) raise the predicted house price. Thus,
this example illustrates how similar information can be visualised in different
ways. Finally, Figure 2.15e only borderline fits in this list because it isn’t really
an abstract visualisation of data. Yet, it is an interesting example because it
demonstrates an example-based explanation (Cai et al., 2019), which we haven’t
covered before. Specifically, an image recognition model explains why it couldn’t
recognise someone’s drawing by showing the most similar classified training
examples it knows and overlays them with the drawing.

Visual Analytics

A specialised subfield of information visualisation is visual analytics. Its general
goal is to foster analytical reasoning through highly interactive interfaces that
combine several visualisations on the same screen (Cui, 2019; Ham, 2010; Keim
et al., 2008; Thomas and Kielman, 2009). Concretely, visual analytics is typically
meant for data experts and AI experts (Mohseni et al., 2021) (see Section 2.5).
It allows them to visually explore large amounts of data so they can discover
complex relations, detect biases, and iteratively refine hypotheses. Of course,
this requires advanced interactions with the visualisations such as selecting
interesting data, exploring different subsets of the data, reconfiguring data by
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Figure 2.15: Examples of visual explanations for different AI models. (a) Split
bar chart for feature importance (Bertrand et al., 2023). (b) Line graph for
sensitivity analysis (Szymanski et al., 2021). (c) Bar charts and network in
a why explanation (Bostandjiev et al., 2012). (d) Bee swarms for feature
importances (SHAP website). (e) Example-based explanation (Cai et al., 2019).

sorting and rearranging, changing the visual appearance itself, showing more or
less details, filtering data on specific conditions, and highlighting connected data
in different visualisations (Yi et al., 2007). In addition, given the rise of ‘big
data’, visual analytics is these days often used in combination with AI models
that process these huge amounts of data (Chatzimparmpas et al., 2020a,b;
Endert et al., 2017; Hohman et al., 2019b; Keim et al., 2010; Liu et al., 2017;
Lu et al., 2017). In the context of XAI, data and AI experts use visual analytics
to visualise how AI models behave, compare different models, and investigate
counterfactual explanations (Chatzimparmpas et al., 2020a,b; Endert et al.,
2017; Gomez et al., 2020; Hohman et al., 2019b; Liu et al., 2017; Lu et al.,
2017; Zhang et al., 2019). Figure 2.16 shows some impressive examples of how
visualisations and interaction can be deeply integrated, and how AI models can
be steered through visual control mechanisms. This relates to the next section.

https://github.com/shap/shap
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Figure 2.16: Examples of visual analytics systems for (a) random forests (Zhao
et al., 2019), (b) counterfactual explanations (Cheng et al., 2021), (c) deep Q-
networks (Wang et al., 2019b), (d) decision trees (van den Elzen and van Wijk,
2011), (e) clustering (Cavallo and Demiralp, 2019), (f) decision rules (Ming
et al., 2019), (g) generative adversarial networks (Kahng et al., 2019), and
(h) sequence-to-sequence models (Strobelt et al., 2019).
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2.7 Control Mechanisms for XAI

So far, we have focused on how XAI can clarify the reasoning process behind
the outcomes of AI models. What would be the next step? What should you
do with this transparency? If you are happy with a model’s outcomes and how
it works, you might not want to do anything. But if you notice that the model
makes faulty inferences, you might want to intervene and correct them (Storms
et al., 2022). For example, suppose you like spending me-time on Friday evening
while watching romcoms. This week, however, your friend who hates romance
comes over for a movie. If your favourite streaming service only recommends
romcoms because it infers that’s what you like on Friday evenings, you need to
somehow tell it about the changed context (Amatriain et al., 2009). Likewise,
when an explanation tells you that an AI model comes to the right outcomes
for the wrong reasons, you might want to improve its decision process. Imagine
your favourite streaming service recommends the Lord of the Rings, which you
like, but its explanation reveals that it did so because it unrightfully assumes
you like fantasy. At that moment, you would need something to tell it you just
like the Lord of the Rings because you fancy Orlando Bloom. The silver lining
in these examples is that transparency might evoke a higher need for control
over AI models. Conversely, if you have control over an AI model, you better
understand how it uses your feedback to change its decisions. In other words,
transparency and control can be two sides of the same coin (Storms et al., 2022)
and this is precisely why control mechanisms play such a big role in XAI.

To gain more control over AI models, researchers have developed control
mechanisms to actively involve people in the decision process (Jannach et al.,
2017). For example, in recommendation systems, you could communicate
your initial preferences through forms (Hijikata et al., 2012) or conversational
dialogues (Göker and Thompson, 2000) and afterwards, you could steer
recommendations through critiquing (Chen and Pu, 2012; Luo et al., 2020;
Petrescu et al., 2021), filtering and sorting (Bostandjiev et al., 2012; O’Donovan
et al., 2008), interacting with (visual) explanations (He et al., 2016; Schaffer
et al., 2015; Tsai and Brusilovsky, 2019b, 2021), or changing the recommendation
algorithm itself (Ekstrand et al., 2015). Figure 2.17 shows two examples of how
recommender systems can be controlled in combination with visualisations. Yet,
how much control and which mechanisms AI systems should incorporate depends
on the context, people’s personal characteristics, and their mood (Cramer et al.,
2008; Jameson and Schwarzkopf, 2002; Jin et al., 2020; Knijnenburg et al., 2011;
Konstan and Riedl, 2012; Millecamp et al., 2018; Xiao and Benbasat, 2007).
Section 2.6 illustrated this for visual analytics: while data and AI experts might
benefit from such highly controllable systems, they are likely too complex for
AI novices. This again underlines the importance of human-centred design.
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Figure 2.17: Examples of how recommendation systems can be controlled.
(a) Sliders on the left allow to set preferences for different musical attributes and
visualisations show how recommendations match those preferences (Millecamp
et al., 2019). (b) Learners can follow or override recommended coding exercises
by using visualised information about how far they have advanced for different
topics and how likely they are to solve exercises correctly (Barria-Pineda, 2020;
Barria-Pineda and Brusilovsky, 2019; Barria-Pineda et al., 2018).

Part of the design challenge is how strongly visualisations should be
integrated with control over the AI model. There are three integration
levels (Turkay et al., 2014). On the first level, visualisations simply present
the model outcomes, typically in a static way or with limited interaction
possibilities. Thus, you have no control over the model. On the second
level, you can modify parameters or the data that the algorithm is using to
train the model and the resulting new outcomes are then visualised. The
integration is still “semi-interactive,” however, because you don’t know the
model’s inner workings and are restricted to changing certain parameters.
Finally, on the third level, the model and visualisation are tightly linked: the
model can be steered interactively through the visualisation and optionally
the model’s inner workings are visualised.
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2.8 How XAI Can Be Evaluated

Section 2.3 mentioned that ‘explainability’ is ill-defined. Yet, Section 2.4 showed
that researchers nevertheless developed tons of algorithmic XAI techniques, and
Section 2.5 stressed how people make everything even more complicated. How do
researchers test whether explanations are actually any good? The inconvenient
truth is there is no consensus on one overall evaluation method (Vilone and
Longo, 2021; Zhou et al., 2021) because of the split between algorithm-centred
and human-centred approaches, and different evaluation goals. However,
generally speaking, there are three levels of evaluation: functionally-grounded,
human-grounded, and application-grounded evaluation (Doshi-Velez and Kim,
2017).

Algorithm-Centred Evaluation

Functionally-grounded evaluation doesn’t involve real people in experiments
and is therefore algorithm-centred. In this case, “explainability” is optimised
according to some formal metric that is supposed to approximate the explanation
quality (Doshi-Velez and Kim, 2017). Some widely used metrics are stability,
robustness, consistency, sparsity, discriminativeness, and computational
efficiency (Afchar et al., 2022). These metrics are intended as a way to
translate human wishes for explanations into mathematics. The advantage
of functionally-grounded evaluation is that experiments can be run anytime.
This is less cumbersome than experiments involving people and also allows
to run tests that would be unethical with real humans. For example, giving
bad explanations to some test participants and good explanations to others
can sometimes be unacceptable. The downside is of course that the chosen
metrics and their formal definition define the whole quality assessment and
don’t necessarily reflect what people think in reality.

Human-Centred Evaluation

Both human-grounded and application-grounded evaluation involve real people
in experiments and can assess many different human-centred concepts; for
example, overall goodness, satisfaction, understanding, curiosity, trust, reliance,
and task performance (Hoffman et al., 2019). Figure 2.13 shows how some
concepts are typical for particular user groups. For example, for AI novices,
it is common to evaluate explanations in terms of how satisfied people are
with them, how they affect people’s trust in the AI model, and how well they
foster understanding the AI model (for the latter, researchers also use the term
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“mental model” (Brachman et al., 2023; Johnson-Laird, 1983; Kulesza et al.,
2012, 2013)). These concepts can be measured with a variety of measurement
instruments, ranging from carefully constructed questionnaires (Madsen and
Gregor, 2000; O’Brien and Toms, 2010; Pu et al., 2011; Vereschak et al., 2021),
to interviews (Leech, 2002), to logging what people click on, look at, how
long they use the explanation, and so on (Cai et al., 2019). The difference
between human-grounded and application-grounded evaluation lies in where
the experiments take place.

In human-grounded evaluations, researchers assess the quality of explanations
based on how participants execute fixed tasks during an experiment in a lab
setting (Doshi-Velez and Kim, 2017). These tasks are simplifications of what
people might do in real-life applications. Some examples are: participants need
to repeatedly choose which explanation they prefer for given pairs (Lundberg
et al., 2022); they need to repeatedly guess the output of an AI model for
given inputs while seeing an explanation so researchers can assess how well
participants understand the explanation (Poursabzi-Sangdeh et al., 2021; Yin
et al., 2019); and they need to solve problems or answer questions under different
explanation types or formats so researchers can compare them (Bertrand et al.,
2023; Bove et al., 2022; Cheng et al., 2019; Gutiérrez et al., 2019b; Szymanski
et al., 2021; Wang and Yin, 2021; Yang et al., 2020a).

In application-grounded evaluations, participants use an AI system with
explanations in real application settings (Doshi-Velez and Kim, 2017). For
example, doctors might use the explanations during real consultations with
patients, or children might be using them at school to better understand why an
AI system is recommending specific exercises. The general idea of this kind of
evaluation is that it is best to assess the ‘goodness’ of explanations directly and in
the real applications they were meant for. A big advantage is that explanations
can be evaluated from different angles. For example, what explanation types
are best suited in specific domains (Afchar et al., 2022). A disadvantage is that
such experiments must be carefully planned and executed because many factors
may affect the results, making it hard to single out the main effects.



Chapter 3

Thesis Overview

The previous chapter gave a sense of what topics my thesis is covering. Hopefully,
you realised how complex it is to explain AI outcomes to humans. As a result,
many challenges remain open. Section 3.1 summarises those that inspired
the research goals and research questions in this thesis (Section 3.2). Then,
Section 3.3 presents the overall human-centred methods we followed to work
towards realising those research goals and answering our research questions.
The actual research is spread over Chapters 4 to 8. As it might be hard to keep
an overview, Section 3.4 clarifies how the rest of this thesis is organised.

3.1 Open Research Challenges

Chapter 2 has introduced XAI, together with many explainability-related
concepts and adjacent research fields such as information visualisation, but has
only touched upon some of the most pressing research challenges. Even though
Chapters 4 to 8 will each start with an in-depth overview of the state-of-the-art
and open problems, this section gives a broader view of what lies ahead.

How to Design and Evaluate Explanations With People?

The algorithmic XAI community has developed many techniques to give
insights into the reasoning process of AI models (Adadi and Berrada, 2018;
Barredo Arrieta et al., 2020; Guidotti et al., 2019b; Montavon et al., 2018;
Stiglic et al., 2020). However, it is unclear whether these explanation techniques
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meet the insights required by different user groups across application domains
and contexts (Mohseni et al., 2021). Furthermore, although it is often claimed
that these techniques improve people’s understanding of and appropriately trust
in AI models, the body of experimental research that backs this up is limited.
In general, researchers seem to mainly rely on their intuition of what ‘good’
explanations are and there is little consensus on how to evaluate them (Doshi-
Velez and Kim, 2017). XAI studies with actual people, real-world data, and
functional complex models are required (Abdul et al., 2018; Adadi and Berrada,
2018; Gedikli et al., 2014) to investigate how people are affected by explanations,
for example in terms of understanding the underlying AI model, trusting it, or
feeling satisfied with the explanation. The case of trust is an interesting one,
because although transparency is often thought to engender trust, there is little
conceptually rich empirical work confirming this (Ananny and Crawford, 2018).
Furthermore, trust is a slippery concept because it evolves (Holliday et al., 2016;
Nourani et al., 2020), is subject to many factors (Hoff and Bashir, 2015), and
can be detrimental when ill-calibrated (Han and Schulz, 2020).

How to Tailor Interactive Visual Explanations?

Information visualisation lies naturally close to XAI since visualisation-supported
explanations can effectively communicate complex information. Visual analytics,
for example, is a useful technique for data and AI experts to analyse how AI
models behave and steer that behaviour accordingly. However, the advanced
control possibilities and the typical complex visualisations in visual analytics
systems can be overwhelming and do not necessarily align with non-researchers’
needs (Kwon et al., 2019). Therefore, an open question is whether design
lessons from visual analytics can be transferred to AI novices. Most current
visual explanations are namely static (Abdul et al., 2018), even though AI
novices might also need to interact with AI systems through visualisations to
incorporate their domain knowledge, communicate preferences, or iteratively
gain more insights. In this context, designers of explanation interfaces need to
make several trade-offs between many desirable explainability goals, such as
transparency, scrutability, trust, effectiveness, persuasiveness, efficiency, and
satisfaction (Kulesza et al., 2013; Tintarev and Masthoff, 2007b, 2011, 2012). For
example, there is a trade-off between effectiveness and efficiency: explanations
that present detailed information to help people make good decisions do not
necessarily help them make those decisions faster (Tintarev and Masthoff, 2011).
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What Are Interesting Application Domains?

To verify whether experimental findings generalise to different contexts, study
results should be compared across application domains. This thesis will focus on
three domains which have common as well as unique explainability challenges:
healthcare, agrifood, and education.

Healthcare. Attempting to further improve human health, healthcare and
biomedicine are increasingly collecting large amounts of biological and clinical
data in the form of electronic health records, DNA sequence data, imaging, and
sensor data, which are then analysed with AI technologies (Litjens et al., 2017;
Luo et al., 2016; Miotto et al., 2018; Yu et al., 2018). For example, ‘big data’
and AI are being used in bioinformatics to study genome-wide associations of
diseases, in clinical informatics to increase care for patients (Carriere et al.,
2021), in imaging informatics to more efficiently analyse medical imaging (Lee
et al., 2021; Li et al., 2007; Liu et al., 2019), and in public health informatics
to predict and monitor infectious disease outbreaks (Kopitar et al., 2020; Luo
et al., 2016; Stiglic et al., 2018; Viani et al., 2021). However, the black-box
nature of complex AI models hampers their adoption in real practice and causal
inference (Tu, 1996). While some researchers question whether AI should be
held to a higher explanatory standard than physicians (Wang et al., 2020) or
hold trust above transparency (Feldman et al., 2019), the general consensus
seems that healthcare is in high need of explainable AI models (Ahmad et al.,
2018; Holzinger et al., 2019; Stiglic et al., 2020; Vellido, 2020). One reason for
this is that medical experts not only have to convince themselves of AI outcomes’
validity, but also their patients, who might distrust them if they base their
judgement on unexplainable model outcomes (Miotto et al., 2018; Vellido, 2020).
Another reason is that healthcare is subject to many medicolegal and ethical
requirements because in the extreme case, lives are at stake (Ahmad et al.,
2018). Furthermore, medical experts require tools to conduct AI-supported data
analysis and need to be integrated more in their design (Vellido, 2020). Finally,
it is an open question how model outcomes are best presented to different
healthcare stakeholders (Bonnett et al., 2019). Overall, these challenges make
healthcare a particularly interesting field to study XAI and visual analytics
techniques (Caban and Gotz, 2015; Hu et al., 2016; Preim and Lawonn, 2020;
Simpao et al., 2014; West et al., 2015; Wu et al., 2019). There is an especial
opening for human-centred research because clinical decision-support systems
generally lack explanations which are tailored to clinicians’ needs (Antoniadi
et al., 2021).
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Agrifood. AI and ‘big data’ are also on the rise in agrifood (Kamilaris et al.,
2017), leading to promising research directions such as Agrifood 4.0 (Lezoche
et al., 2020), precision agriculture (Cisternas et al., 2020; Linaza et al., 2021;
Wachowiak et al., 2017), and smart farming (Ayoub Shaikh et al., 2022; Moysiadis
et al., 2021; Wolfert et al., 2017). Example applications include precisely
monitoring crop growth (Cisternas et al., 2020; Lindblom et al., 2017) and
optimising irrigation (Gil et al., 2021; Kamienski et al., 2018). To process
large amounts of data and interact with AI models, agrifood stakeholders
increasingly need decision support systems (Zhai et al., 2020). However, even
though researchers have proposed many prototypical systems (Gutiérrez et al.,
2019a; Zhai et al., 2020), their uptake remains limited so far (McCown, 2002).
Possible reasons for this are: current decision support systems lack usability,
uncertainty representations, and visualisations; they do not meet end users’
needs; and end users often distrust their black-box underlying AI models (Parker,
1999; Parker and Campion, 1997; Rose et al., 2016; Zhai et al., 2020). These
challenges could be tackled by combining techniques from XAI, visual analytics,
and human-centred design (Lindblom et al., 2017; Parker and Sinclair, 2001;
Rose et al., 2017).

Education. The histories of AI and education have always been deeply
intertwined (Doroudi, 2022), but especially in recent years, education is
embracing technology-enhanced learning for personalised learning (Verbert
et al., 2012) and learning is shifting away from traditional classrooms to
e-learning environments (Salau et al., 2022). These evolutions make large-
scale data collection possible, which in turn inspires learning analytics to
better understand and support learners based on data (Bodily et al., 2018b).
Furthermore, it allows increasing adoption of AI technologies for recommending
learning materials (Drachsler et al., 2015; Khanal et al., 2020; Salau et al.,
2022; Wu et al., 2020), assessing learners’ mastery level (Galici et al., 2023;
Torkamaan and Ziegler, 2022), creating educational content (Bitew et al., 2022;
Khosravi et al., 2023; Kurdi et al., 2020; Ni et al., 2022), evaluating the quality
of learning materials (Conijn et al., 2023), and so on. Similar to other domains,
calls for XAI and control mechanisms are emerging in the field (Khosravi et al.,
2022). Interestingly, education has a long tradition in both aspects. First, to
provide transparency, education has long been studying open learner models,
which show learners what the system knows about them (Bull, 2020; Bull and
Kay, 2007; Bull and McKay, 2004; Rahdari et al., 2020). Second, to foster
metacognitive skills such as self-knowledge and reflection, learners have been
given control over all learning aspects, including their learner model, the way
learning materials are being selected and presented, and learning materials’
difficulty (Brusilovsky, 2023; Bull and Pain, 1995; Kay, 2001; Mabbott and Bull,
2006; Papoušek and Pelánek, 2017). Yet, research typically doesn’t include
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needs studies of end users (Bodily et al., 2018a) and there is a lack of research
on control mechanisms for selecting learning materials (Brusilovsky, 2023).
Addressing these challenges is especially hard for education, because learners
might not always be ready to control or collaborate with AI due to insufficient
knowledge (Brusilovsky, 2023).

3.2 Research Goals and Research Questions

Our research focuses on designing, implementing, and evaluating visualisation-
based explanations for systems that integrate AI models such as prediction
models and recommendation algorithms. We follow a human-centred approach
and thus tailor our explanation interfaces to specific target audiences and
application domains. Some of our research objectives are the following:

O1. Evaluate visual explanations in healthcare, agrifood, and education, for
example in terms of their ability to foster appropriate trust in AI models
and understanding their outcomes;

O2. Study the trade-offs between completeness and complexity for explanation
interfaces during human-centred design processes;

O3. Design interaction techniques that allow people to incorporate their domain
knowledge into AI systems.

These objectives are complemented by the following broad research questions:

RQ1. How can visual explanations tailored to a target audience and application
domain make AI models more transparent?

RQ2. How can people control AI models with additional feedback, supported
by interactive visual explanations?

RQ3. How do visual explanations and control affect people’s perceptions of AI
systems in terms of, for example, appropriate trust and understanding
their outcomes?

Given the focus on visualisations and human perceptions, the AI models we
implemented in this thesis are not optimised in terms of performance and are
less advanced than, for example, the neural networks introduced in Section 2.1.
Specifically, Chapter 5 uses a linear regression model and Chapters 6 to 8 use
recommendation algorithms based on an Elo rating system.
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3.3 Overall Methods

To tackle the research goals and questions, we applied various research methods
that each have their own intricacies and learning curves.

First, we conducted a systematic review of the literature (Grant and Booth,
2009) to get an overview of the existing research on visual analytics in the
scope of XAI. This required carefully constructing a search query (Rethlefsen
et al., 2014), tediously screening thousands of papers according to the PRISMA
guidelines (Moher et al., 2009), coding the collected papers in a huge Excel
spreadsheet, synthesising the coded papers into a coherent story, and finally
making recommendations for future research (Bakken, 2019).

Second, we designed explanation interfaces following a human-centred design
approach (Abras et al., 2004) to ensure people in our target audiences can use
our explanation interfaces as intended and can learn how to use them with
little effort. Concretely, we collected target-users’ needs and iterated over low-
fidelity prototypes during multiple focus groups (Hennink, 2014) and think-aloud
studies (Abras et al., 2004). This iterative approach implied we often needed to
start over designing parts or even entire interfaces.

Third, we conducted in-depth semi-structured interviews (Leech, 2002) and
randomised controlled experiments (Glennerster and Takavarasha, 2013) to
rigorously evaluate our explanation interfaces. In these studies, we collected and
analysed data both quantitatively and qualitatively, typically combining both to
benefit from both their advantages. Quantitative data, such as log data on how
people use our systems and self-reported Likert-type questionnaires based on
validated scales, were analysed statistically with parametric and non-parametric
approaches (Creswell and Creswell, 2017; Everitt and Hothorn, 2011; Siegel
and Castellan, 1988; Snedecor and Cochran, 1969). The most challenging parts
here are wrangling the collected data into manageable formats for analysis, and
selecting the appropriate statistical methods depending on the data. Qualitative
data, such as interview transcriptions and written responses to open questions,
were analysed thematically (Braun and Clarke, 2012; Braun et al., 2018). This
analysis was arguably the most energy-consuming as I first had to manually
transcribe dozens of hours of interviews, code the resulting dozens of pages of
text, and then bring all codes together into a coherent story.
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3.4 Organisation of the Text

During my PhD, I contributed to 14 papers in total (see Figure 3.1). The
rest of this thesis only presents some of them, divided into four parts. The
first three each investigate a different approach towards explainability: Part I
discusses visual analytics, Part II addresses visualisation-supported justification,
and Part III delves into visualisation-supported control. Part IV presents the
overall conclusions. The research in Chapters 4 to 8 has been published in
scientific journals and conferences or will be submitted there soon. This has
two implications.

First, while I am the principal author of the chapters presented in this thesis,
the research is the result of close collaboration with multiple colleagues. To
acknowledge their contributions, I will use “we” throughout the chapters unless
I’m making personal statements. (You might have noticed I already started
doing that in this chapter.)

Second, the writing style is an academic one. Phrasings are therefore quite
dense: a lot of information needs to be communicated within limited space
because publication venues enforce length restrictions and readers have limited
attention spans. In addition, it is regularly assumed that readers are familiar
with related research and jargon. If you are inexperienced with scientific texts,
the upcoming chapters may therefore be more challenging to understand. Still, I
invite you to give it a try. If the text really gives you the shivers, it’s okay to just
focus on the pictures and background stories. Hopefully, they prevent you from
running away before you get to the overall conclusions and acknowledgements.
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7 Research publications as first author
• Ooge, J., Dereu, L., and Verbert, K. (2023). Steering Recommendations and

Visualising Its Impact: Effects on Adolescents’ Trust in E-Learning Platforms. In
Proceedings of the 28th International Conference on Intelligent User Interfaces, IUI’23,
pages 156–170, New York, NY, USA. Association for Computing Machinery.

• Ooge, J.*, Kato, S.*, and Verbert, K. (2022). Explaining Recommendations in
E-Learning: Effects on Adolescents’ Trust. In 27th International Conference on
Intelligent User Interfaces, IUI’22, pages 93–105, New York, NY, USA. Association for
Computing Machinery.

• Ooge, J., Stiglic, G., and Verbert, K. (2022). Explaining artificial intelligence
with visual analytics in healthcare. WIREs Data Mining and Knowledge Discovery,
12(1):e1427.
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Interactive Visualisations. In 27th International Conference on Intelligent User
Interfaces, IUI’22 Companion, pages 120–123, New York, NY, USA. Association
for Computing Machinery.
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• Ooge, J. and Verbert, K. (2021). Trust in Prediction Models: A Mixed-Methods Pilot
Study on the Impact of Domain Expertise. In 2021 IEEE Workshop on TRust and
EXpertise in Visual Analytics (TREX), pages 8–13, New Orleans, LA, USA. IEEE.
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K., and Štiglic, G. (2023). Self-Care Oriented Smartphone Apps for Type 2 Diabetes:
A Comparative Analysis. In Proceedings of the Central European Conference on
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• Donoso-Guzmán, I., Ooge, J., Parra, D., and Verbert, K. (2023b). Towards a
Comprehensive Human-Centred Evaluation Framework for Explainable AI.

• Bhattacharya, A., Ooge, J., Stiglic, G., and Verbert, K. (2023). Directive Explanations
for Monitoring the Risk of Diabetes Onset: Introducing Directive Data-Centric
Explanations and Combinations to Support What- If Explorations. In Proceedings of
the 28th International Conference on Intelligent User Interfaces, IUI’23, pages 204–219,
New York, NY, USA. Association for Computing Machinery.

• Htun, N.-N., Rojo, D., Ooge, J., De Croon, R., Kasimati, A., and Verbert, K. (2022).
Developing Visual-Assisted Decision Support Systems across Diverse Agricultural Use
Cases. Agriculture, 12(7):1027.

3 Research publications under review
• Ooge, J.*, Szymanski, M.*, Vanneste, A., and Verbert, K. Steer, See Impact, Solve:

How Learner Control and Visual Explanations Impact Learning, Motivation, and
Trust. Submitted to CHI 2024.

• Szymanksi, M.*, Ooge, J.*, Verbert, K. Feedback, Control, or Explanations?:
Interaction Mechanisms for Domain Experts in AI-Based Decision-Support Systems.
Submitted to LAK 2024.

• Bhatt, S., Ooge, J., Van Den Noortgate, W., Verbert, K. Inferring teacher
competencies for personalized learning from teaching and learning analytics on i-Learn.
Submitted to Journal of Learning Analytics.

Figure 3.1: Overview of the 14 publications I contributed to during my PhD.
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Chapter 4 presents a systematic review on existing visual
analytics systems in healthcare. This chapter was published

as a journal paper (Ooge et al., 2022b):
Ooge, J., Stiglic, G., and Verbert, K. (2022). Ex-
plaining artificial intelligence with visual analytics in
healthcare. WIREs Data Mining and Knowledge Discovery,
12(1):e1427

As the first author, I conducted the whole review process,
classified and analysed the collected papers, wrote the paper,
and collected unpublished screenshots of the visual analytics
systems. The methods, results, and text were discussed with

both co-authors.

Chapter 5 presents an uncertainty-aware visual analytics
system for agrifood. This chapter builds on a pilot study

published as a workshop paper (Ooge and Verbert, 2021) and
was published as a journal paper (Ooge and Verbert, 2022):

Ooge, J. and Verbert, K. (2021). Trust in Prediction
Models: A Mixed-Methods Pilot Study on the Impact of
Domain Expertise. In 2021 IEEE Workshop on TRust and
EXpertise in Visual Analytics (TREX), pages 8–13, New
Orleans, LA, USA. IEEE

Ooge, J. and Verbert, K. (2022). Visually Explaining
Uncertain Price Predictions in Agrifood: A User-Centred
Case-Study. Agriculture, 12(7):1024

As the first author of both papers, I designed and
implemented the visual anaytics system, conducted all

interviews, transcribed and analysed them, and wrote the
papers. I also presented the first paper during the

TREX 2021 workshop. The methods, results, and text were
discussed with Katrien Verbert. Finally, the chapter

contributed to the following paper:
Htun, N.-N., Rojo, D., Ooge, J., De Croon, R., Kasimati,
A., and Verbert, K. (2022). Developing Visual-Assisted
Decision Support Systems across Diverse Agricultural Use
Cases. Agriculture, 12(7):1027
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Chapter 4

Explaining AI with Visual
Analytics in Healthcare

To make predictions and explore large datasets, healthcare is increasingly
applying advanced algorithms like artificial intelligence. However, to make
well-considered and trustworthy decisions, healthcare professionals require ways
to gain insights in these algorithms’ outputs. One approach is visual analytics,
which integrates humans in decision-making through visualisations that facilitate
interaction with algorithms. Although many visual analytics systems have been
developed for healthcare, a clear overview of their explanation techniques is
lacking. Therefore, we review 71 visual analytics systems for healthcare, and
analyse how they explain advanced algorithms through visualisation, interaction,
shepherding, and direct explanation. Based on our analysis, we outline research
opportunities and challenges to further guide the exciting rapprochement of
visual analytics and healthcare.

4.1 Introduction

Healthcare professionals are increasingly acquiring vast amounts of electronic
health records, analysing these data with advanced algorithms like artificial
intelligence (AI), and basing decisions on the algorithmic outcomes (Miotto
et al., 2018). Countless examples illustrate the rise of AI in healthcare: Stiglic
et al. (2018) and Kopitar et al. (2020) built predictive models for chronic
diseases, Liu et al. (2019) detected diseases from medical imaging with deep
learning, Viani et al. (2021) and Carriere et al. (2021) applied natural language
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processing to extract disease onset from textual health records and to assist
with rehabilitation assessment and treatment, etc.

The shift towards “big data” and AI comes with tremendous opportunities
for healthcare, but also entails important challenges (Ahmad et al., 2018). A
prominent challenge is that well-performing techniques such as deep learning
generally yield “black box” models: understanding how they establish outputs is
hard or even infeasible. Many healthcare stakeholders deem it unacceptable to
fully rely on “black boxes”, and call for explaining algorithmic decision processes.
This call is further reinforced by medico-legal and ethical requirements, and
regulations on AI use like the European GDPR, which endorses a right to
explanation (Goodman and Flaxman, 2017).

Constructing explanations for AI models is the holy grail in explainable artificial
intelligence (XAI), a melting pot of research fields like cognitive psychology,
human-computer interaction, and computer science (Hind, 2019). A promising
approach for XAI is visual analytics. This subfield of information visualisation
fosters analytical reasoning through interactive visual interfaces (Cui, 2019;
Ham, 2010; Keim et al., 2008): by visually exploring data and iteratively refining
hypotheses, users can discover complex relations in large datasets, detect biases,
and get insights in how algorithms work (for example through shepherding,
i.e. controlling the algorithmic process).

Many visual analytics systems have been developed for healthcare, but a clear
overview of their explanation techniques is lacking. Therefore, we review
visual analytics systems that incorporate advanced algorithms, and that were
either specifically designed for a healthcare context, or evaluated therein. Our
contribution is twofold. First, we showcase the potential of visual analytics for
explaining algorithms according to four perspectives, enclosed in our research
questions:

• RQ1. How do visual analytics systems visualise the outcomes of advanced
algorithms?

• RQ2. Which interactions do visual analytics systems support?
• RQ3. How do visual analytics systems support shepherding of advanced

algorithms?
• RQ4. How can visual analytics systems explain advanced algorithms

directly?

Second, we analyse main trends, opportunities and remaining challenges for
visual analytics in healthcare. Along the way, we report which advanced
algorithms are incorporated in visual analytics systems for healthcare, and for
which purposes they are used. We present our findings with an interdisciplinary
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Figure 4.1: Healthcare increasingly adopts advanced algorithms, and often
requires explanations for the algorithmic process. Visual analytics can provide
insights in algorithms through visualisation, interaction, shepherding and
direct explanations. Thus, visual analytics holds important opportunities
for healthcare.

audience in mind, and thus hope to further strengthen the bridge between visual
analytics, AI and healthcare.

4.2 Background and Related Work

Our review touches upon healthcare, advanced algorithms, explainable AI, and
visual analytics. This section presents relevant work in the intersection of these
domains.

4.2.1 Explainable Artificial Intelligence

XAI encompasses a huge collection of intertwined topics, including trust, fairness,
bias, causality, accountability, privacy and reasoning (Abdul et al., 2018). One
side-effect of this rich mix is that researchers have not yet agreed upon a rigorous
definition for explainability, and often interchange it with interpretability,
understandability, or intelligibility (Gilpin et al., 2018; Lipton, 2018).
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Human-computer interaction recognises that the meaning of explainability and
its requirements depend on the target user and application context. Mohseni
et al. (2021) classified target users into AI novices, data experts, and AI
experts, each needing unique design goals and evaluation measures. Wang et al.
(2020) and Ahmad et al. (2018) pointed out that the importance of explanations
depends on the healthcare application: they are crucial when care is affected, but
less pressing for treatment cost prediction. To determine a suitable explanation
level, Vellido (2020) argued to integrate healthcare experts in the design of data
analysis interpretation strategies.

Even though explainability lacks a formal definition, the AI community has
developed many explanation techniques for AI models (Adadi and Berrada,
2018). Guidotti et al. (2019b) categorised these techniques according to how
they open the “black box” problem: by explaining the model itself, by explaining
the outcomes, or by inspecting the model. Stiglic et al. (2018) and Du et al.
(2019) categorised explanation techniques by scale (local vs global) and type
(model-specific vs model-agnostic): local explanations focus on a single instance,
whereas global explanations try to explain the entire model; model-specific
explanations are only applicable for particular models (e.g., deep learning
models (Montavon et al., 2018)), whereas model-agnostic explanations can
explain any model (Ribeiro et al., 2016).

4.2.2 Visual Analytics for Explainable Artificial Intelligence

Many authors have surveyed visual analytics systems in the scope of AI. Some
surveys mainly focus on the machine learning aspect. For example, Liu et al.
(2017) classified visual analytics systems by whether they are intended to
understand, diagnose or refine machine learning models; Endert et al. (2017)
considered the machine learning type and the interaction intent. Other surveys
rather focus on the visualisation aspect. For example, Lu et al. (2017) categorised
predictive visual analytics systems based on their interaction methods and
prediction tasks; Hohman et al. (2019b) discussed the why, who, what, how,
when, and where of visualising deep learning models. Chatzimparmpas et al.
(2020a) covered both machine learning and visualisation aspects in a review on
enhancing trust with interactive visualisations: their fine-grained classification
covers interaction type, machine learning model, and trust level.

4.2.3 Visual Analytics in Healthcare

Ever since visual analytics emerged, healthcare has been recognised as one of
its most promising application areas (Keim et al., 2008; Thomas and Kielman,
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Table 4.1: Query used for paper selection. Categories were combined with an
AND operator.

Category Keywords

algorithm ai OR algorithm* OR artificial intelligence OR automated OR big data
OR data mining OR deep learning OR machine learning OR predict*

analytics analytics OR data analy* OR decision support OR electronic health
records

healthcare *medic* OR bioinformatics OR clinic* OR health*
interaction explor* OR interact*
visualisation dashboard OR graphic* OR interface OR visual*

2009) because of the many opportunities for clinicians, patients, researchers, and
other healthcare stakeholders (Caban and Gotz, 2015). The fruitful interplay
between healthcare, medical visualisation, and visual analytics produced an
extensive jargon, including visual intelligent decision support systems (Ltifi and
Ayed, 2016), clinical informatics (Simpao et al., 2014), and health informatics
(Wu et al., 2019).

Despite the diverging terminology, a lot of interesting work has been presented in
different healthcare areas, for example population health services (Chishtie et al.,
2020), prevention of disease outbreaks (Preim and Lawonn, 2020), and cancer-
related genomics (Qu et al., 2019). In biomedics, Sturm et al. (2015) categorised
existing work on interactivity level vs analysis type and visualisation technique,
and Turkay et al. (2014) classified visual analysis tools by their analytical task
and integration of computational methods. Finally, Rostamzadeh et al. (2020)
and West et al. (2015) reviewed interactive visualisations of electronic health
records, and Wang et al. (2011) presented case studies and design guidelines
based on their experiences with Lifelines2.

To conclude, a rich set of surveys highlights the importance of explaining machine
learning. However, the general surveys on visual analytics in Section 4.2.2 are
not framed in a healthcare context and do not discuss its specific requirements.
In contrast, the reviews in Section 4.2.3 are healthcare-oriented, but do not focus
on explanations or only cover a specific healthcare subdomain. To shed light
on the intersection of healthcare, visual analytics and explanation techniques,
we review visual analytics systems for healthcare that facilitate algorithmic
explainability. We also extend the scope from machine learning to advanced
algorithms in general.
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4.3 Paper Collection and Classification Process

Starting from the key reviews in Section 4.2, we iteratively compiled the search
query in Table 4.1 to target interactive visualisations that were specifically
developed for or applied in a healthcare context, and that involve at least one
advanced algorithm. Our query also considers diverging terminology for similar
concepts: for example, “decision support systems” in healthcare can fit with
what the visualisation community considers as interactive visual dashboards.

In January 2021, the first author queried Scopus, and then screened 1908
matches based on their abstract (285 remaining) and full-text (83 remaining,
including 12 overview papers). We excluded papers that present fully static
or interaction-limited visualisations (i.e. first level of integration in (Turkay
et al., 2014)), solely discuss image processing outcomes, do not allow for data
analysis, present statistical or visualisation software, or do not involve advanced
algorithms. The latter condition excluded dashboards like LifeLines2 (Wang
et al., 2011). Finally, the first author classified all included papers in Tables 4.2
and 4.3, inspired by existing frameworks for activity types (Rostamzadeh et al.,
2020), algorithmic classes (Endert et al., 2017), interaction types (Yi et al.,
2007), and explanation techniques (Guidotti et al., 2019b; Mohseni et al., 2021).

Sections 4.4 to 4.7 present Tables 4.2 and 4.3 in detail. Each section treats one
technique to obtain insights in advanced algorithms: visualisation, interaction,
shepherding, or direct explanation.

4.4 Visualising Algorithmic Outcomes in Visual
Analytics

A first way to gain insights in advanced algorithms is to visualise their
outcomes. Based on the first two column groups in Table 4.2, we discuss
several visualisation approaches (cfr. RQ1) for distinct algorithmic families,
and uncover the healthcare activities for which visual analytics systems in our
sample are used.
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Table 4.2: Classification of 71 visual analytics systems in our sample according
to healthcare activity types, present algorithms, and interaction types.
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In
te

rp
re

ta
ti

on
P

re
di

ct
io

n

A
no

m
al

y
de

te
ct

io
n

A
rt

ifi
ci

al
ne

ur
al

ne
tw

or
k

C
la

ss
ic

al
st

at
is

ti
cs

C
la

ss
ifi

ca
ti

on
C

lu
st

er
in

g/
si

m
ila

ri
ty

D
at

a
m

in
in

g
D

im
en

si
on

re
du

ct
io

n
Fe

at
ur

e
se

le
ct

io
n

Se
gm

en
ta

ti
on

O
th

er

A
bs

tr
ac

t/
el

ab
or

at
e

C
on

ne
ct

E
nc

od
e

E
xp

lo
re

F
ilt

er
R

ec
on

fig
ur

e
Se

le
ct

Sh
ep

he
rd

Abbasloo et al. (2019) • • • • • • •
Abdullah et al. (2020) • • • • • • • • •
Afzal et al. (2011) • • • • • •
Alsaad et al. (2019) • • • •
Barlowe et al. (2013) • • • • • •
Behrisch et al. (2018) • • • • • •
Borland et al. (2020) • • • • •
Brunker et al. (2019) • • • • • • • • •
Cao et al. (2011) • • • • • • •
Clark et al. (2017) • • • • •
Dang et al. (2015) • • • • • •
Dingen et al. (2019) • • • • • •
Dixit et al. (2017) • • • • • • • •
Fang et al. (2017) • • • • •
Farag et al. (2015) • • • • • • •
Feller et al. (2018) • • • • •
Geurts et al. (2015) • • • • •
Gotz et al. (2011) • • • • • • •
Gotz et al. (2014) • • • • •
Gotz et al. (2020) • • • • • • • • •
Guo et al. (2020) • • • • • • •
Guo et al. (2018) • • • • • • • •
Herold et al. (2010) • • •
Hinterberg et al. (2015) • • • •
Huang et al. (2015) • • • • • •
Huang et al. (2019) • • • •
Hund et al. (2016) • • • • • • • • • • •
Hur et al. (2020) • • • • • •
Ji et al. (2017) • • • • • • • • •
Ji et al. (2019a) • • • • • • • •
Ji et al. (2019b) • • • • • • • • • •
Jönsson et al. (2019) • • • • •
Kakar et al. (2019) • • • • • • •
Klemm et al. (2014) • • • •
Klimov et al. (2015) • • • • •
Kovalerchuk et al. (2012) • • • • • • •
Krause et al. (2014) • • • • • • • • • • •
Krause et al. (2016) • • • • • • • • •
Krause et al. (2018a) • • • •
Kumar et al. (2015) • • • • • • • • •
Kwon et al. (2018) • • • • • • • • • • • •
Kwon et al. (2019) • • • • • • • • •
Kwon et al. (2021) • • • • • • •

Continued on next page
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Table 4.2 – Continued from previous page
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L’Yi et al. (2015) • • • • • • •
L’Yi et al. (2017) • • • • • • • • • •
Lamy and Tsopra (2019) • • • •
Li et al. (2012) • • • • • • • • • •
Li et al. (2020) • • • • • • •
Liao et al. (2017) • • • • • • • • •
Males et al. (2020) • • • • • •
Malik et al. (2015) • • • • •
Moschonas et al. (2016) • • •
Müller et al. (2020) • • • • • • •
Nauta et al. (2020) • • • • • • •
Nguyen et al. (2011) • • • • • • • • • •
Nguyen et al. (2012) • • • • • • • • • •
Raidou et al. (2016a) • • • • • •
Raidou et al. (2016b) • • • • • •
Riegler et al. (2016) • • • • • •
Santamaría et al. (2008) • • • • • •
Santamaría et al. (2019) • • • • • •
Seo and Shneiderman (2002) • • • • •
Song et al. (2017) • • • • • • • • •
Spitz et al. (2020) • • • • • •
Stolper et al. (2014) • • • • • • • •
Verma et al. (2017) • • • • • • •
von Landesberger et al. (2013) • • • • • •
Widanagamaachchi et al. (2017) • • • • •
Xing et al. (2014) • • • • • • •
Yu et al. (2017b) • • • • • • • • • •
Zhao et al. (2017) • • • • • •

Total 55 16 2 8 20 11 38 11 18 3 4 5 50 38 19 19 41 38 58 32

Activity Rostamzadeh et al. (2020) divided healthcare activities into
interpreting, predicting, and monitoring. ■ Interpretation is the most frequently
supported activity in our sample (55/71). Thus, most visual analytics systems
are geared towards exposing patterns in data, and discovering relations among
features. Less common is ■Prediction whereby outcomes are anticipated
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or hypotheses are formed based on the available data (16/71). Finally,
■Monitoring is absent in our sample: no visual analytics systems help to
manage recurrent or chronic diseases.

Algorithm The visual analytics systems in our sample incorporate a multitude
of algorithmic families. Clustering/similarity is the most common family (38/71):
its algorithms are mainly used for interpreting, which explains that activity’s
prevalence. ■Clustering algorithms group similar data points, say similarly
nutritious meals (Feller et al., 2018) or genomes (Seo and Shneiderman, 2002).
Results from k-means and k-nearest neighbours are usually visualised in scatter
plots with dots coloured according to their cluster (e.g., (Ji et al., 2019b; Klemm
et al., 2014), Figure 4.2a), or in projection plots after dimension reduction, e.g.,
(Guo et al., 2020; Ji et al., 2017). To avoid dimension reduction, Abdullah et al.
(2020) and Kwon et al. (2018) (Figure 4.2a) use parallel sets: axes that represent
features are connected by ribbons to show the proportional distribution of
feature combinations for each cluster. Alternatively, Gotz et al. (2011) and Cao
et al. (2011) (Figure 4.4a) visualise clusters of patients as Voronoi treemaps,
where cells represent features of patients. Interestingly, L’Yi et al. (2015) apply
parallel sets to compare clustering algorithms. Two more clustering algorithms
are biclustering and hierarchical clustering. Santamaría et al. (2008) visualise
biclustered microarray data as a Venn diagram. Cluster hierarchies are typically
visualised as dendrograms next to a heat map matrix, e.g, (Farag et al., 2015;
Yu et al., 2017b) in Figure 4.2d. Other visualisations are: an expandable list
of cluster representatives (Raidou et al., 2016b), inductively grouped circles
(Behrisch et al., 2018), and a time line of clusters at a given hierarchy level
(Widanagamaachchi et al., 2017).

We classified ■Similarity measures like cosine, Jaccard and Hellinger distance
together with clustering, because they are often used to group data. For example,
Borland et al. (2020) (Figure 4.5d) hierarchically aggregate similar events in
an icicle plot to track selection bias in patient cohorts; Barlowe et al. (2013)
(Figure 4.2b) rank protein flexibility plots by similarity to a target.

Next comes ■Classical statistics (20/71), which illustrates that current systems
still heavily rely on non-machine learning algorithms. Classical statistics includes
three techniques. (1) Correlation analysis: cells in correlation matrices are
typically colour-coded to reveal patterns and outliers, e.g., (Males et al., 2020;
Song et al., 2017). (2) (Non)parametric hypothesis testing: Abbasloo et al.
(2019) and Jönsson et al. (2019, 2020) (Figure 4.3b) highlight brain regions
that significantly differ for people with and without a condition; Malik et al.
(2015) visualise patients that survived or died after certain event sequences as
back-to-back bar charts, and indicate significant differences. (3) Regression:
Males et al. (2020) (Figure 4.2c) compare two groups’ colon morphology in
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Figure 4.2: Examples of visualising algorithmic outcomes. (a) Clustering
outcomes in a scatter plot and parallel coordinates (Kwon et al., 2018); (b) Plots
ranked according to similarity to the first one (Barlowe et al., 2013); (c) Classical
regression lines in scatter plots (Males et al., 2020); (d) Top: parallel coordinates
and projection plot with heat map after dimension reduction. Right: heat map
matrix and dendrogram of hierarchical clustering (Farag et al., 2015); (e) Results
of sequential pattern mining in a scatter plot (Gotz et al., 2014); (f) Anomalous
activities highlighted in several visualisations (Liao et al., 2017).

overlaid scatter plots and regression lines; Verma et al. (2017) predict adverse
drug reactions with logistic regression, and visualise the confidence as ribbon
width in a Sankey diagram.

The following techniques are more commonly associated with AI: Dimension
reduction (18/71), Data mining and Classification (both 11/71). ■Dimension
reduction projects multidimensional data to 2D or 3D with principal component
analysis (PCA), singular value decomposition, multiple factor analysis, t-SNE,
UMAP, or self-organising maps. In our sample, PCA is the most popular
technique, for example for omics data analysis (Farag et al., 2015; Nguyen
et al., 2012) or feature extraction on bacteria’s infrared spectroscopy spectra (Ji
et al., 2019a). Reduced dimensions are typically visualised in a 2D scatter plot,
which can be augmented with a density heat map, or accompanied by a parallel
coordinates visualisation of the original data (Farag et al., 2015; Ji et al., 2019a)
(Figure 4.2d). Only (Nguyen et al., 2012, 2011) use 3D scatter plots.

■Data mining algorithms extract patterns from data. With sequential pattern
mining, Fang et al. (2017) highlight similarities in line graphs of health sensor
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data, Gotz et al. (2014) (Figure 4.2e) query event sequences and correlate
them with positive and negative outcomes, Santamaría et al. (2019) highlight
nucleosome patterns in sequenced chromosomes, and Klimov et al. (2015)
identify risk factors for kidney damage in parallel coordinates. Furthermore,
Dixit et al. (2017) optimise care pathways with process mining, and Zhao et al.
(2017) mine association rules for cancer causes and visualise them in parallel
coordinates.

■Classification algorithms like random forest and k-nearest neighbours assign
data points to a class, for example to predict rupture risk of aneurysms (Spitz
et al., 2020). Their overall performance is typically visualised in a confusion
matrix, e.g., (Krause et al., 2018a), and data points’ classes are often indicated
with colours, e.g., (Herold et al., 2010; Nguyen et al., 2012, 2011).

The remaining five algorithmic families include specialised techniques. ■Artificial
neural network mainly consists of recurrent neural networks with long short-
term memory (LSTM) to handle long-range temporal dependencies. ■Feature
selection contains techniques like information gain, which identify the most
relevant features in a dataset. ■Segmentation algorithms partition medical
images into multiple segments. ■Anomaly detection identifies unusual data
points, for example anomalous activities in smart homes (Liao et al., 2017)
(Figure 4.2f). Finally, ■Other contains algorithms like partial dependence,
epidemiological models, Bayesian networks and hidden Markov models, which
do not fit in any of the previous families.

Overall, algorithmic outcomes can be visualised in many typical and alternative
ways, depending on the algorithmic family and the desired insights. These
insights are in turn related to the healthcare activity which is most often
interpreting data, rather than predicting or monitoring.

4.5 Interaction in Visual Analytics

While static visualisations may already provide interesting insights in advanced
algorithms, adding interaction makes them more powerful as users can then
test hypotheses, focus on particular insights, or view information from different
angles. The Interaction group in Table 4.2 classifies our sample into seven
interaction types proposed by Yi et al. (2007) (cfr. RQ2). Select (58/71) and
Abstract/elaborate (50/71) are the most frequently supported types, whereas
Encode and Explore (both 19/71) the least. Most visual analytics systems
support multiple interactions and as Select co-occurs with all other interaction
types, we present those first. Note that Lu et al. (2017) introduced shepherding
as an interaction type, yet we discuss it separately in Section 4.6.
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Figure 4.3: Examples of interaction with visualisations. (a) Abstract or
elaborate information with zooming (Kumar et al., 2015); (b) Filter data with
sliders in parallel coordinates (Jönsson et al., 2019, 2020); (c) Reconfigure a
scatter plot by changing axes’ features, and connect a selected data point with
related points (Stolper et al., 2014); (d) Encode data differently by adding spikes
to points in a scatter plot, and brush-and-link (Hund et al., 2016); (e) Select
nodes in a scatter plot with lasso selection (Kwon et al., 2019).

■Abstract/elaborate interactions show or hide details in four ways. (1) Tooltips
that pop up when hovering or clicking a visualisation can show raw data, e.g.,
(Malik et al., 2015; Xing et al., 2014), or additional visualisations, e.g., (Afzal
et al., 2011; Gotz et al., 2014). (2) Collapsing components removes visual clutter,
for example lines in line graphs (Afzal et al., 2011) or parallel coordinates (Huang
et al., 2019), identical rows in matrices (Dang et al., 2015), or similar points in
scatter plots (Kwon et al., 2018). Conversely, expanding components shows extra
information like individual lines instead of ribbons in parallel sets (Kwon et al.,
2018), subsequences of sequential health records (Malik et al., 2015), or groups
in icicle plots (Borland et al., 2020). (3) Zooming enlarges a visualisation, e.g.,
(Kumar et al., 2015; Males et al., 2020) (Figure 4.3a). An interesting zooming
variant is lensing, which enlarges a specific area and compresses the rest: Dang
et al. (2015) use it in a large matrix of protein-biomolecule reactions. (4) To
change the visualised level of a clustering hierarchy, Widanagamaachchi et al.
(2017) and Behrisch et al. (2018) provide a slider, and Seo and Shneiderman
(2002) a bar that can be dragged along a dendrogram.

■Filter interactions allow to focus on insights of interest by setting conditions
on the data with check-boxes, radio buttons or sliders. Examples are: filtering



INTERACTION IN VISUAL ANALYTICS 57

Figure 4.4: Examples of interaction with visualisations. (a) Connect a hovered
cell to related cells with highlighting (Cao et al., 2011); (b) Explore 3D plots
with scrolling (Song et al., 2017); (c) Select data in a scatter plot and update
other visualisations (Raidou et al., 2016a).

network connections above a correlation threshold (Xing et al., 2014), filtering
results that are statistically significant (Jönsson et al., 2019, 2020) (Figure 4.3b),
and adjusting the range of attributes in parallel coordinates by brushing axes,
e.g., (Yu et al., 2017b), or manipulating sliders on the axes, e.g., (Jönsson et al.,
2019; Santamaría et al., 2008).

■Reconfigure interactions change the spatial arrangement of data items in at
least three ways. (1) Sorting matrices, lists and tables can reveal patterns, e.g.,
(Dang et al., 2015), and anomalies like violations in diagnostic rules for breast
cancer (Kovalerchuk et al., 2012). (2) Changing attributes. Axes in scatter
plots can be configured with buttons or drop-down menus to represent different
attributes, e.g., (Abdullah et al., 2020; Krause et al., 2014; Stolper et al., 2014)
(Figure 4.3c). Checkboxes can change available attributes in parallel sets, e.g.,
(Abdullah et al., 2020), or line graphs, e.g., (Fang et al., 2017). (3) Repositioning
data points manually can reduce occlusion (L’Yi et al., 2017; Verma et al., 2017),
and automatic repositioning according to a chosen similarity metric can group
similar data points (Brunker et al., 2019; Ji et al., 2019a).

■Connect interactions highlight associations between data items, and are often
triggered by hovering. Hovering one part of a visualisation can highlight other
parts in the same visualisation, for example connected ribbons and sets in
parallel sets, e.g., (Abdullah et al., 2020), neighbours in a network (Brunker
et al., 2019; Li et al., 2020; L’Yi et al., 2017), or other features from the hovered
data point (Cao et al., 2011; Gotz et al., 2011) (Figure 4.4a). Hovering can also
highlight related entities across multiple visualisations, e.g., (Kakar et al., 2019;
Kumar et al., 2015).

■Explore interactions bring new data subsets into view. 2D visualisations can
often be panned, e.g., (Afzal et al., 2011; Behrisch et al., 2018; L’Yi et al., 2017).
In 3D, images can be rotated with sliders or buttons, e.g., (Abbasloo et al.,
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2019; Jönsson et al., 2019), or the y-direction can be explored by scrolling up
and down the x-z plane (Song et al., 2017) (Figure 4.4b). Other exploration
interactions are: picking different clustering results for visualisation (Kwon
et al., 2018), and drilling down a Bayesian network by clicking nodes (Müller
et al., 2020).

■Encode interactions alter the visual representation of data, which may concern
the overall visualisation or the colour encoding. First, some visual analytics
systems switch between entirely different visualisation types, e.g., (Behrisch et al.,
2018; Borland et al., 2020; Krause et al., 2014). Others extend a visualisation,
for example by adding colour-coded links to a similarity scatter plot (Brunker
et al., 2019), or spikes to dots in a scatter plot to represent all data dimensions
(Hund et al., 2016) (Figure 4.3d). Second, recolouring nodes in scatter plots or
networks can reveal similarity to a specific node (Ji et al., 2019b); association
strength with a particular entity (Xing et al., 2014); and cluster specifics like
compactness, size and distribution (Hund et al., 2016).

■Select interactions mark data items, either manually through brushing, e.g.,
(Guo et al., 2018), lasso selection, e.g., (Kwon et al., 2019; Raidou et al., 2016a)
(Figure 4.3e), clicking on a legend (Guo et al., 2020), or pinning (Dingen et al.,
2019; Kakar et al., 2019); or automatically based on a chosen metric, e.g.,
(Stolper et al., 2014). Selected data are typically coloured prominently to
easily focus on them. For example, Herold et al. (2010) and Hinterberg et al.
(2015) respectively highlight cells on fluorescence micrographs and significant
phenotype-gene expression associations that match set thresholds.

Select often precedes other interactions, hence its prominence. Geurts et al.
(2015) compare the quality of several segmentation algorithms for selected
segments (Abstract/elaborate). Liao et al. (2017) only show selected items in a
radar map (Filter). Lamy and Tsopra (2019) reposition selected rainbow boxes,
and Nguyen et al. (2012, 2011) reposition points in a scatter plot by similarity to
a selected point (Reconfigure). Upon selecting multiple clustering results, Kwon
et al. (2018) convert nodes in a scatter plot into small pie charts that reflect to
which clusters the nodes belong in the different clusterings (Encode). Lastly,
selecting data points can connect them to related data (Stolper et al., 2014)
(Figure 4.3c), or update other visualisations, e.g., (Hund et al., 2016; Klemm
et al., 2014; Raidou et al., 2016a, 2015) (Figure 4.3d, Figure 4.4c, Connect).

To conclude, visual analytics systems support many interaction types that often
co-occur. These interactions facilitate insights in algorithmic outcomes, which
can in turn strengthen a user’s mental model of how an advanced algorithm
works.
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4.6 Shepherding Algorithms With Visual Analytics

So far, we have covered two methods to gain insights in advanced algorithms:
visualising their outcomes, and interacting with the visualisations. A special
interaction type is ■ Shepherding: guiding or controlling the algorithmic process
to show algorithms’ behaviour under different settings (cfr. RQ3). Shepherding
bridges interactive visualisations and direct explanations, because it is an
example of what Mohseni et al. (2021) call “what-if explanations”. Table 4.2
shows that less than half (32/71) of the visual analytics systems in our sample
allows shepherding. This section groups those systems by their “level of
integration” (Turkay et al., 2014), which indicates how seamlessly they integrate
algorithms. Figure 4.5 shows that we found examples in the full spectrum
between level two (semi-interactive) and three (tight integration). Recall
that our review excluded level one systems (static visualisations or limited
interaction).

Visual analytics systems of integration level two can only modify parameters
or the data domain through menus or pop-up windows that obscure the
visualisation, e.g., (Brunker et al., 2019; Santamaría et al., 2019). An illustrative
example is (L’Yi et al., 2017) (Figure 4.5a), where users can configure prediction
models for miRNA-mRNA interaction in a tab completely separate from the
visualisation. This approach hinders swift shepherding as users constantly need
to switch between configuration and visualisation.

To better integrate the algorithm configuration, visual analytics systems can fix
settings panels along the visualisation, or use pop-ups that minimally obscure
the visualisation. Through radio buttons, checkboxes, text fields or sliders,
users configure algorithms and rerun them by pressing a button. Examples
of modifiable aspects are: the parameter k in k-nearest neighbours clustering
(Spitz et al., 2020), the number of clusters (Ji et al., 2019b) (Figure 4.5b), the
applied algorithm (Riegler et al., 2016), the attributes for analysis (Abbasloo
et al., 2019; Dixit et al., 2017; Zhao et al., 2017), the query for pattern mining
(Gotz et al., 2014) (Figure 4.2e), and the feature weights that best distinguish
ill and healthy people (Moschonas et al., 2016).

Visual analytics systems with a settings panel can integrate algorithms more
tightly by rerunning them automatically after reconfiguration. For example,
Clark et al. (2017) rerun statistical tests for drug dose-response analysis after
altering features or the tests’ sidedness, Barlowe et al. (2013) rerank histograms
after modifying the number of bins, Feller et al. (2018) reapply clustering after
changing the number of clusters, Jeong et al. (2009) (Figure 4.5c) and Ji et al.
(2017) change the contribution of dimensions in weighted PCA, and (Guo et al.,
2018) adjust the clustering level of medical event sequences to find meaningful
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Figure 4.5: Examples of shepherding, ordered by the level of integration in
the visual analytics system (Turkay et al., 2014). Semi-interactive examples are
situated left; the more to the right, the tighter the integration. (a) L’Yi et al.
(2017), (b) Ji et al. (2019b), (c) Jeong et al. (2009), (d) Borland et al. (2020),
(e) Dingen et al. (2019), (f) Li et al. (2012).

groupings and to understand their sensitivity.

To further integrate algorithms into visual analytics systems, visualisations
can themselves incorporate configuration functionalities like sliders to adjust
how aggressively sequential events are grouped (Borland et al., 2020; Gotz
et al., 2020) (Figure 4.5d), drop-down menus to configure dimension reduction
techniques (Abdullah et al., 2020; Kwon et al., 2018), and textfields to set the
maximal cohort size for cohort clustering (Huang et al., 2015).

Four visual analytics systems approach the highest integration level: they
automatically update algorithmic outcomes when input changes. First, Li et al.
(2020) show predicted risk of heart failure in a line chart, and add a line for
the updated risk after removing or adding drugs. (Kwon et al., 2019) is similar,
though its predictions need to be rerun manually. Next, Afzal et al. (2011)
compare diseases’ mortality and infection rates under different epidemiological
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Table 4.3: Classification of ten visual analytics systems with direct explanations
in our sample according to explanation type, explanation scale, explanator and
target user.
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Alsaad et al. (2019) • • • • •
Hur et al. (2020) • • • •
Krause et al. (2014) • • • • •
Krause et al. (2016) • • • • • •
Krause et al. (2018a) • • • • • • •
Kwon et al. (2018) • • • • •
Lamy and Tsopra (2019) • • • • • •
Müller et al. (2020) • • • • • • •
Nauta et al. (2020) • • • • •
von Landesberger et al. (2013) • • • •

Total 1 9 4 6 3 1 1 1 1 4 1 1 2 1 8 10

parameters and measures. Last, Dingen et al. (2019) (Figure 4.5e) allow to drag
variables into a dedicated panel to automatically generate logistic regression
models, and compare those models across groups.

Finally, visual analytics systems of the third integration level shepherd
algorithms through direct interaction with visualisations. First, Li et al. (2012)
(Figure 4.5f) allow to relocate and edit regions of interest in a 3D image of the
brain, after which the strength of connections between them is recomputed.
Second, Hund et al. (2016) (Figure 4.3d) project clustering results under different
distance measures, and rerun the algorithms when users filter the data. Third,
Gotz et al. (2011) and Cao et al. (2011) (Figure 4.4a) provide rich interactions
to refine clusters of patients: users can filter features, merge clusters with lasso
selection, drag patients out of clusters, and automatically remove patients far
from the cluster centre.
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4.7 Directly Explaining Algorithms With Visual
Analytics

Besides visualising and interacting with algorithmic outcomes, a final technique
to better understand advanced algorithms is to directly explain how they work
(cfr. RQ4). Our sample includes ten visual analytics systems with explicit
explanations: Table 4.3 classifies them by type, scale, explanator, and target
user.

Type All but one explanation techniques are model-specific. Some of them
can be applied to other algorithms of the same family (e.g., all feature selection
algorithms), but only Prospector (Krause et al., 2016) (Figure 4.6a) is fully
model-agnostic. Prospector shows how a prediction is affected when feature
values are perturbed with colour-coded sliders that correspond to partial
dependence plots.

Scale Zooming in on explanations’ scale, our sample mainly contains local
explanations (6/10). Three systems explain artificial neural networks (ANNs) on
a different scale. (1) Nauta et al. (2020) globally explain how an ANN predicts
coma outcome: for a fixed epoch and a fixed hidden layer, all input activations
are projected onto a scatter plot, and users can then select clusters to train a
decision tree that distinguishes them. (2) Alsaad et al. (2019) use contextual
decomposition to locally explain how a long short-term memory (LSTM)
network predicts asthma based on clinical visits: each visit’s contribution
to the prediction is visualised in a heat map matrix that also highlights the
most predictive subset of visits. (3) Hur et al. (2020) apply model inspection to
explain a LSTM that predicts heart failure or heart surgery based on medical
pathways: for the average or a specific patient, an attention heat map shows
the variable weights in all time steps of the LSTM.

Explanator Four visual analytics systems in our sample use feature
importance for explanations: they assign scores to features to indicate how
strongly they impact the algorithmic outcome. (1) Müller et al. (2020) predict
suitable cancer treatments with a Bayesian network, and determine the global
and local relevance of evidence with sensitivity analysis. Users can also see the
impact of updating or adding evidence in donut charts. (2) To select features
that best predict diabetes, Krause et al. (2014) (Figure 4.6b) score feature
importance with information gain, Fisher score, odds ratio, and relative risk.
These four scores are computed in ten cross-validation folds, and visualised as
quadrants of a circular bar chart. (3) Krause et al. (2018a) predict hospital
admission with binary classifiers, and explain them with decision rules, which
consist of feature sets that change the prediction outcome when removed. Users
can inspect these decision rules in a matrix of data items (rows) and features
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(a) (b) (c)

Figure 4.6: Examples of direct explanations in visual analytics systems.
(a) Sliders show how perturbed inputs impact the prediction (Krause et al.,
2016); (b) Circular glyphs with quadrants of feature importance scores (Krause
et al., 2014); (c) Segmented mesh colour-coded by similar landmark movements
(von Landesberger et al., 2013).

(columns, ordered by gini feature importance). (4) After clustering, Kwon et al.
(2018) apply ANOVA to identify significant relationships between features and
clusters, and use the F-values as importance values to rank features.

User Most of the collected explanation methods (8/10) are designed for both
data experts and AI experts. von Landesberger et al. (2013) (Figure 4.6c)
specifically target AI experts, who can detect drawbacks of segmentation
algorithms through visualisations of landmark movements. Lamy and Tsopra
(2019) also explain through visualisation, which seems the only approach suitable
for AI novices: they visualise ANNs without hidden layers as rainbow boxes.
These boxes symbolise connections in the ANN, and their height equals the
weight of those connections.

4.8 Observations, Opportunities and Challenges

Our review investigated four methods to obtain insights in advanced algorithms:
(1) visualising their outcomes and (2) interacting with these visualisations,
(3) shepherding them, and (4) directly explaining them. These methods are
not always clearly separable as shepherding can be a kind of interaction with
visualisations, and visualisations can also act as direct explanations. Put
differently, there is a fine line between getting insights in algorithmic outcomes
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Figure 4.7: Opportunities and challenges for visual analytics, artificial
intelligence, and healthcare. Human-computer interaction can mediate the
dialogue between these three communities.

and in the inner logic of algorithms themselves. This section answers our
research questions, and positions them in the broader, multidisciplinary context
of Figure 4.7.

4.8.1 Visualising Outcomes: Many Algorithm-Dependent
Possibilities

Section 4.4 showed that algorithmic outcomes can be visualised in many
ways (RQ1), ranging from basic scatter plots to original custom glyphs.
Some visualisations often occur together with specific algorithms, for example
dendrograms with hierarchical clustering, and projection plots with dimension
reduction. This co-occurrence seems to hold in general: visualisation approaches
strongly depend on the algorithmic family and the healthcare activity. We
observed that visual analytics systems for a healthcare context mainly rely on
mainstream interpretative algorithms such as clustering, dimension reduction
and classical statistics, resulting in few visual analytics systems for predictive
activities, and even none for monitoring chronic diseases such as diabetes. On
the one hand, this suggests room for adopting more specialised state-of-the-art
AI techniques such as transformer neural networks, Bayesian networks, and
natural language processing. On the other hand, the absence of monitoring
systems in our sample suggests a gap for further research. This gap is related
to a second observation: most of the visual analytics systems in our sample
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target healthcare professionals, but as technology increasingly facilitates self-
monitoring, laypeople are likely to become an important target group too.
Future studies could thus investigate how visual analytics may fit the needs of
laypeople.

4.8.2 Interacting With Visualisations: Sufficient or Too Much?

Section 4.5 demonstrated that existing visual analytics systems incorporate all
seven interaction types from Yi et al. (2007) (RQ2): Abstract/elaborate, Connect,
Encode, Explore, Filter, Reconfigure and Select. The frequent appearance of
Abstract/elaborate presumably originates from the widespread details-on-demand
mantra in information visualisation (Shneiderman, 2003). All interaction
types exist in different forms, and are often combined in highly interactive
visualisations. While this is encouraged to facilitate insights in algorithmic
outcomes, some developers of visual analytics systems in our sample, e.g., (Kwon
et al., 2019), intensively collaborated with healthcare professionals and note
that caution is needed: end-users are not always looking for highly exploratory,
information-heavy interfaces that are interesting from a visualisation perspective,
but are too complex for their needs. Instead, some healthcare contexts may
require visual analytics systems that act as fellow healthcare experts and point
out interesting cases in the data. Thus, tailoring the amount of interaction in
visual analytics systems is part of the broader challenge to involve end-users in
every stage of the design process and identify their needs. This may improve
user acceptance and enhance trust in the proposed system (Abdullah et al.,
2020).

4.8.3 Shepherding Algorithms: A Higher-Order Interaction

Section 4.6 showed that algorithms can be shepherded by tuning algorithmic
parameters or modifying input (RQ3). Visual analytics systems can integrate
shepherding along a continuum that ranges from separating shepherding and
visualisations to tightly connecting both. Despite its potential to provide what-
if explanations, optimise existing models, or build new meaningful models,
shepherding was relatively uncommon in our sample. This could be due to a
trade-off that rises when the amount of transparency and shepherding freedom is
determined: giving too much control to non-trained users can overwhelm them or
incur misleading outcomes resulting from overfit models. Blindly playing around
with parameters may be harmless for exploratory contexts such as clustering
similar documents (Ji et al., 2019b) or medical images (Riegler et al., 2016),
but can have severe consequences in delicate predictive contexts. Therefore, AI
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experts should inform healthcare professionals about the applicability, strengths
and weaknesses of AI models, and visual analytics developers should help in
training healthcare professionals to use their systems. User-studies in our
sample endorse the need for such training, e.g., (Cao et al., 2011; Gotz et al.,
2020; Kwon et al., 2021). Another possibility is to develop different versions of
visual analytics systems and only provide shepherding functionalities in specific
contexts.

4.8.4 Direct Explanations: Rare Yet Promising

Section 4.7 revealed two interesting observations about direct explana-
tions (RQ4). First, few examples were present in our sample, yet all of them
involved visualisations. Second, AI novices are so far often neglected. Although
directly explaining advanced algorithms to AI novices seems challenging, future
research could for example investigate whether conversational design and
example-based explanations give solace (Ribera and Lapedriza, 2019). In
that way, patients may better understand personalised health plans proposed
by their clinician, potentially by comparing their health measurements against
similar patients. Of course, AI experts remain an important target group as
well: direct explanations in interactive visual analytics systems can help them
explain existing black-box models, obtain information about the inner logic
of advanced algorithms, and design algorithms that are better interpretable.
Regarding the latter, collaborating with healthcare professionals is essential to
learn what interpretability means in their context.

4.9 Conclusion

XAI is extremely relevant in our current age of algorithms and massive data
collection, and visual analytics has proven to play an important role in the quest
for explainability. Healthcare has acknowledged the value of visual analytics in
many applications, but may not have taken enough advantage of this exciting
field yet (West et al., 2015). For example, Bonnett et al. (2019) showed that
risk prediction is still dominated by simple static visualisations like point score
systems and nomograms. In addition, our review suggests a lack of interactive
visual analytics systems for monitoring, and systems that target laypeople.

Our review also reveals that visual analytics holds many opportunities for XAI in
healthcare by providing insights in advanced algorithms through visualisation,
interaction, shepherding, and direct explanations. Yet, complex challenges
remain: many healthcare stakeholders are involved in the visual analytics
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process (Kolyshkina and Simoff, 2021), domain practices should be respected,
domain expertise is often required to correctly interpret algorithmic results, and
explanation techniques should be tailored to the application domain and target
users. These XAI challenges cannot be solved in isolation, so we encourage
the visual analytics, AI and healthcare communities to further reach out to
each other, and we invite the human-computer interaction community to help
mediating this fascinating interdisciplinary dialogue.
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The Human Side of Chapter 4
The Three Towers
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I visited Gregor’s lab in Maribor (Slovenia) with Katrien and Robin and
presented a preliminary literature review on visual analytics and XAI for
healthcare, which became the foundation for this chapter. I remember everyone’s
enthusiasm and how I secretly felt like an absolute fraud who didn’t deserve the
warm welcome. After the research visit, Robin and I travelled to Graz (Austria),
where we spent several days walking for miles. One day, we climbed the
Schlossberg to visit the famous Uhrturm tower. Compared to the spectacular
view on the city, I found the Uhrturm slightly underwhelming, but I was
intrigued by how a nearby clock tower was trying to hide in plain sight. Never
thought I could feel like a tower.

Songs on repeat:

• Underdog by BANKS
• Alibi and the rest of the Goddess (Deluxe) album by BANKS
• Doin’ Time by Lana Del Rey
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Clock tower in Graz – November 2019



In December 2019, Oscar gifted me The Art of Statistics: Learning from Data
by David Spiegelhalter during a Secret Santa dinner with the Augment lab in
which I worked. His kind words and everyone’s company made me feel accepted
by an incredible international team. I was happy and could not have wished
for a better team at the start of my PhD. Until today, Oscar’s book has a
prominent place in my living room, reminding me of that unforgettable evening.
Oh, and I loved the book, by the way. Read it.

Songs on repeat:

• Stroke and the rest of the III album by BANKS
• Gemini Feed and the rest of the The Altar album by BANKS
• Late Night Feelings by Mark Ronson and Lykke Li
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The Art of Statistics – October 2023



When I started collecting papers in November 2019, I was intimidated by the
vast amount of existing work and other meticulously executed systematic reviews.
Paralysed by the fear of missing relevant work and constructing a suboptimal
classification, I fled into working on other papers (Ooge et al., 2020; Ooge and
Verbert, 2021, 2022). In January 2021, I regained courage and screened about
2000 paper abstracts in a couple of days, after which I painstakingly started
to screen the full papers and classify them in a ginormous Excel sheet (118
columns). Driven by the rush to finish as many papers as possible each day,
I worked late hours at my studio desk with frontal view on the imec tower in
Heverlee. Every evening, I watched the tower light up, its office lights painting
abstract patterns in the night sky. I still wonder whether the office in the left
upper corner, typically lit until 3 am, was also housed by a crazy workaholic.

Songs on repeat:

• Love Hangover by Diana Ross
• Everything i wanted by Billie Eilish
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imec tower – January 2021



In the spring of 2021, I was finishing the categorisation of papers and started
writing the actual review. Tired of staring at the imec tower and working from
home under the Covid restrictions, I started working outside. My favourite spot
was a bench in front of the Arenberg castle in Heverlee, next to what I baptised
the “frog pool.” I think the Hogwarts vibes that the castle was giving me made
me believe that something magical would bring together my categorisation and
notes into a coherent review. The croaking frogs in the deliciously warm sun
brought me into the perfect trance for making that magic happen. By June
2021, I had been writing while sneezing my brains out in the high grass and
doing my laundry at the laundry centre. But whenever I see Table 4.2, I can’t
help hearing “croak”s and “ribbit”s.

Songs on repeat:

• Technicolour by Montaigne
• Thunder by Catnapp
• Hello? by Clairo
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Arenberg castle in Heverlee – May 2021





Chapter 5

Visually Explaining Uncertain
Price Predictions in Agrifood

The rise of ‘big data’ in agrifood has increased the need for decision support
systems that harvest the power of artificial intelligence. While many such
systems have been proposed, their uptake is limited, for example because
they often lack uncertainty representations and are rarely designed in a user-
centred way. We present a prototypical visual decision support system that
incorporates price prediction, uncertainty, and visual analytics techniques. We
evaluated our prototype with 10 participants who are active in different parts of
agrifood. Through semi-structured interviews and questionnaires, we collected
quantitative and qualitative data about four metrics: usability, usefulness and
needs, model understanding, and trust. Our results reveal that the first three
metrics can directly and indirectly affect appropriate trust, and that perception
differences exist between people with diverging experience levels in predictive
modelling. Overall, this suggests that user-centred approaches are key for
increasing uptake of visual decision support systems in agrifood.

5.1 Introduction

Under the impulse of success stories in other domains, artificial intelligence
and ‘big data’ are on the rise in agrifood (Kamilaris et al., 2017), leading to
promising research directions such as Agriculture 4.0 (Zhai et al., 2020) and the
broader Agrifood 4.0 (Lezoche et al., 2020), precision agriculture (Cisternas
et al., 2020; Linaza et al., 2021; Wachowiak et al., 2017), and smart
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farming (Ayoub Shaikh et al., 2022; Moysiadis et al., 2021; Wolfert et al., 2017).
While the adoption of such technologies is still modest in real-life agrifood
applications (Osinga et al., 2022), it is expected that the wide availability
of cloud computing and remote sensing (Navarro et al., 2020) will further
boost their spread (Liakos et al., 2018). To process the explosive amount of
information in this era of growing digitisation and to make data-grounded
decisions, agrifood stakeholders increasingly need the assistance of decision
support systems (DSSs) (Zhai et al., 2020) that facilitate learning and allow
to modify decision processes by integrating domain knowledge, rather than
systems that merely prescribe actions (McCown, 2002; Rojo et al., 2021).

Yet, even though the need for DSSs in agrifood has been acknowledged
for over two decades (McCown, 2002) and many prototypes have been
proposed (Gutiérrez et al., 2019a; Zhai et al., 2020), the uptake of these systems
has been limited so far. Parker (1999); Parker and Campion (1997), Zhai et al.
(2020), and Rose et al. (2016) discussed several reasons for this low uptake:
user interfaces of DSSs are not always user-friendly and lack visualisations,
DSSs are not necessarily relevant when they do not meet end users’ needs or
decision-making styles, outputs often miss uncertainty representations, and
end users often distrust DSSs with opaque underlying algorithms. In other
words, developers of DSSs for agrifood face important design challenges such as
increasing usability, guarding usefulness for end users, and raising appropriate
trust in underlying decision models.

Tackling these challenges requires human-centred approaches, which lie at
the core of human–computer interaction (HCI), an interdisciplinary field that
connects computer science, social sciences, and technology-applying domains
such as agrifood. Specifically, HCI studies how interfaces can be designed and
tailored to specific end users or application contexts to improve user experience,
for example (Carroll, 1997; Olson and Olson, 2003; Shneiderman et al., 2016).
Two subdomains of HCI specialise in visualising complex information and
explaining artificial intelligence, respectively. The first subdomain, visual
analytics, fosters analytical reasoning with visual dashboards that support
advanced interaction and visual exploration to discover hidden patterns in
data (Cui, 2019; Ham, 2010; Keim et al., 2008). The second subdomain,
explainable artificial intelligence (XAI), seeks techniques that give insights into
outcomes of artificial intelligence models, and studies interrelated topics such
as trust, fairness, bias, causality, accountability, privacy, and reasoning (Abdul
et al., 2018).

Visual analytics and XAI are relevant in agrifood because DSSs increasingly
include predictive models and benefit from visualising information. Yet, current
DSSs in agrifood often lack uncertainty representations and are rarely designed
in a user-centred way (Rose et al., 2017). To enable informed decision-making
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by different end users, researchers and practitioners have called for adopting
more user-centred and HCI practices in agrifood (Lindblom et al., 2017; Parker
and Sinclair, 2001; Rose et al., 2017).

We address this call by presenting a visual DSS that shows predicted food
product prices and uncertainty in the predictions. We evaluated our prototype
with 10 participants who are active in different parts of agrifood; collecting and
analysing both qualitative and quantitative data. In particular, we focused on
the following research questions:

RQ1 Usability : How user-friendly are the interaction functionalities and the
visualisation in our visual DSS?

RQ2 Usefulness and needs : How useful is our visual DSS and how does it
accommodate the needs of people active in agrifood?

RQ3 Model understanding : How does visualising uncertain predictions
affect people’s understanding of the prediction model underlying our visual
DSS?

RQ4 Trust : How does visualising uncertain predictions affect people’s trust
in the prediction model underlying our visual DSS?

Our research contribution consists of extensively evaluating our visual DSS
from two perspectives. First, considering our prototype as a product, we
assessed its usability and usefulness. Sections 5.4.1 and 5.4.2 show that
participants were generally very positive about our prototype’s usability (RQ1)
and expressed needs regarding control, comparison, and explanations (RQ2).
Second, considering our prototype as an XAI research tool, we dived deeper
into what affected participants’ understanding of and trust in the prediction
model underlying our DSS, and the relation with uncertainty visualisation.
Sections 5.4.3 and 5.4.4 show that participants’ understanding was affected on an
algorithmic and an outcome level (RQ3), and that trust in the prediction model
evolved under several factors (RQ4). In both perspectives, we considered the
impact of participants’ experience with predictive modelling, observing different
responses for different experience levels. Finally, we made our prototypical
visual DSS open-source so that the community can use it as a flexible basis for
more advanced dashboards tailored to specific contexts.

5.2 Background and Related Work

To contextualise our research, we first discuss visualisation for DSSs and
uncertainty representation. Then, we turn towards XAI and focus on trust.
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5.2.1 Visualisation for Decision Support Systems

Visualising information augments people’s abilities to get insights into complex
data and more effectively fulfil tasks that cannot be automated (Munzner,
2014). Presenting decision-making information visually has also been found
to make DSSs more user-friendly (Rose et al., 2016). Hence, it is no surprise
that DSSs often incorporate visualisations to facilitate decision-making across
application domains, e.g., healthcare (Botha et al., 2012; Rind, 2013; West
et al., 2015), learning analytics (Verbert et al., 2013; Vieira et al., 2018), finance
(Savikhin et al., 2011), and supply chain analytics (Basole et al., 2017; Khakpour
et al., 2021). In many of these domains, decision-making is supported by visual
analytics, which combines powerful visualisations with advanced interaction
techniques (Yi et al., 2007) and automated data analysis. This allows people to
iteratively generate and test hypotheses (Cui, 2019; Ham, 2010; Keim et al.,
2008, 2010). In healthcare, for example, visual analytics has been applied to
personalise medical treatments by analysing electronic health records, modelling
diseases and medical prediction, optimising care pathways, and so on (Hu et al.,
2016; Preim and Lawonn, 2020).

In agrifood, many visual DSSs have been proposed too, for example in dairy
farming (Di Silvestro et al., 2014), crop control (Armstrong and Nallan, 2016;
Machwitz et al., 2019), land assessment (Ochola and Kerkides, 2004), irrigation
management (Accorsi et al., 2014), and climate monitoring (Jarvis et al.,
2017). Yet, Gutiérrez et al. (2019a) found that most visual DSSs include
maps, contain a single visualisation, and are intended for farmers to manage
crops or assess land suitability. This suggests room for dashboards with multiple
visualisations in other application areas such as livestock monitoring and sales.
In addition, it suggests that current visual DSSs in agrifood are less advanced
than visual analytics approaches in terms of varied visualisations and interaction
possibilities.

5.2.2 Uncertainty Visualisation

Visual DSSs are subject to uncertainties in the data and uncertainties propagated
during the data processing, modelling, and visualisation (Sacha et al., 2016;
Skeels et al., 2010). These uncertainties can be visualised in many ways
(Demmans Epp and Bull, 2015; Spiegelhalter et al., 2011), but there are
two challenges. First, visualising uncertainty entails a trade-off: showing
too much uncertainty may overload or confuse people, whereas showing too
little uncertainty feigns accuracy and may mislead people (Sacha et al., 2016).
Second, some approaches for uncertainty visualisation may be clearer or less
misleading than others.
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Tackling these challenges is hard, which unfortunately often results in simply
omitting uncertainty (Franconeri et al., 2021; Hullman, 2020). This is currently
the case in agriculture: visual DSSs rarely consider uncertainty (Gutiérrez
et al., 2019a; Zhai et al., 2020). One exception, for example, is CropGIS
(Machwitz et al., 2019), which predicts produced biomass of maize under different
meteorological conditions. CropGIS then visualises the mean prediction in a
line chart, together with the minimum, maximum, and 1σ-confidence interval,
resembling a fan chart (Britton et al., 1998) with a single fan.

Researchers in information visualisation face the above two challenges by
studying the pros and cons of different uncertainty visualisation techniques.
For example, in the case of predicted time series, studies have shown that
(a) similar to fan charts, uncertainty intervals around a prediction line are best
distinguished with different opacity levels (Seipp et al., 2019); (b) fan charts are
a good compromise between accuracy and uncertainty (Gutiérrez et al., 2019b);
and (c) compared to ensemble charts, fan charts lead to higher acceptance of
predictions (Leffrang and Müller, 2021).

5.2.3 Visualisation for Explainable Artificial Intelligence

As visual DSSs often incorporate complex algorithms, end users typically need
explanations to understand the algorithmic decision-making, appropriately trust
it, and detect potential biases (Gunning and Aha, 2019). There is no one-size-
fits-all explanation, however. Human-centred XAI researchers therefore study
how explanations can be effectively designed, considering factors such as the
application context (Dhanorkar et al., 2021; Suresh et al., 2021; Vellido, 2020),
human reasoning processes (Wang et al., 2019a), and end users’ goals (Mohseni
et al., 2021) or personal characteristics (Millecamp et al., 2019; Suresh et al.,
2021).

XAI and visual analytics largely intersect. Visualisations can namely serve
as explanations when people get visual insight in model outcomes and model
behaviour, actively interact with them, and steer the underlying algorithms
(Ooge et al., 2022b). Given the wide interest in visualisation for XAI, many
surveys have discussed the state-of-the-art in visual analytics for machine
learning (Endert et al., 2017; Liu et al., 2017), deep learning (Hohman et al.,
2019b), predictive modelling (Lu et al., 2017), and enhancing trust in machine
learning (Chatzimparmpas et al., 2020a) from different perspectives. A meta-
analysis of all these surveys confirmed the key role of visualisation in interpreting
machine learning (Chatzimparmpas et al., 2020b).
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5.2.4 Trust in Intelligent Systems

Many application domains call for increasing end users’ trust in algorithmic
decision-making of DSSs, including agrifood (Gutiérrez et al., 2019a; Rose et al.,
2016). In the scope of explaining black-box algorithms, trust is thus heavily
studied in XAI and visual analytics. However, trust is a slippery concept for
at least two reasons. First, there is no widely accepted definition for trust in
intelligent systems, although many definitions have been proposed (Jacovi et al.,
2021; Madsen and Gregor, 2000; Vereschak et al., 2021). Second, measuring
trust is very challenging because it evolves (Holliday et al., 2016; Nourani et al.,
2020; Ooge and Verbert, 2021) and is affected by many factors (Hoff and Bashir,
2015), for example, domain expertise (Nourani et al., 2020; Ooge and Verbert,
2021), visualised information and uncertainty (Mayr et al., 2019; Sacha et al.,
2016), model accuracy (Papenmeier et al., 2022; Yin et al., 2019), and level of
transparency (Kizilcec, 2016). In addition, there is growing consensus among
XAI researchers that optimising trust is not always desirable; rather, the stress
should lie on appropriate trust (Gunning and Aha, 2019) and trust calibration
(Han and Schulz, 2020; Solhaug et al., 2007). Some researchers even argue that
XAI research should move away from trust and focus on utility instead (Davis
et al., 2020).

5.3 Materials and Methods

This section presents how we conducted our user-centred study. We first describe
our visual DSS, study rationale, and overall study design. Then, we provide
more details on how we measured usability, trust, and experience with predictive
regression.

5.3.1 Visual Decision Support System

We developed a prototypical visual DSS for exploring product prices in various
countries. Besides visualising historical price evolutions, our system visualises
predicted future prices and the prediction model’s uncertainty. Rather than
building an advanced standalone interface with an accurate prediction model, we
aimed to create a simple and flexible proof of concept for which the underlying
dataset and prediction model could easily be replaced. To encourage future
adaptations, we built our prototype with the open-source Meteor, React, and
D3 frameworks, and made our code publicly available at https://github.com/
JeroenOoge/explaining-predictions-agrifood (accessed on 9 July 2022).

https://github.com/JeroenOoge/explaining-predictions-agrifood
https://github.com/JeroenOoge/explaining-predictions-agrifood
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In our proof of concept, the dataset contained price evolutions in European
countries over the past 3 decades for over 400 food products, including fruits,
vegetables, dairy, meat, and cereals. For each country separately, price
predictions were generated by fitting a third-degree polynomial to the country’s
past price data with linear regression and least-squares estimation, extrapolating
the fit for five years from the last known data point on. Uncertainty consisted
of 55–99%-prediction intervals with increments of 5%.

Figure 5.1 shows our dashboard. At the top, two search fields with dropdown
menus allow selecting a desired food product and countries available for that
product. In the middle, the price evolution for selected countries is visualised in
a line graph; each country is represented by a differently coloured full line. At
the bottom, five checkboxes allow to enable or disable visual components: the
first is enabled by default (Past data); the others are related to the prediction
outcome and model (Future prediction, Future uncertainty, Past fit, and Past
uncertainty). The future prediction and past fit are visualised as dashed
lines, and the prediction intervals as stacked bands (i.e., fans), where larger
intervals gradually become lighter. Finally, hovering over the chart and its
visual components shows details-on-demand in the form of a tooltip with the
exact price values or additional information.

5.3.2 Study Rationale

Adapting to economic uncertainty and predicting market fluctuations are
important challenges in Agrifood 4.0 (Zhai et al., 2020). To meet these challenges,
we framed our study in the context of predicting food product prices and built
upon an earlier pilot study (Ooge and Verbert, 2021), which showed that four
people experienced with predictive modelling had different trust evolutions
while using our visual DSS. To investigate the transferability of our preliminary
results, we recruited via email 10 end users who are active in agrifood or
finance. Then, we evaluated our prototypical visual DSS according to four
metrics: usability, usefulness and user needs, model understanding, and trust.
With the former two, we considered our prototype as a product: we wanted to
identify issues with the visualisation and the interaction possibilities and find
out whether our prototype matches participants’ needs. With the latter two, we
considered our prototype as an XAI research tool: we set out to discover how
the visual components in our visual DSS impact participants’ understanding
of the prediction model and what affects participants’ trust in the model. For
all four metrics, we also considered the effect of participants’ profession and
experience with predictive modelling.

In addition, we were interested in whether our visual DSS would allow
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Figure 5.1: Screenshots of our responsive visual DSS during interaction. Left:
selecting a food product in the upper left search field and getting details about
the price and date upon hovering over the line chart. Right: selecting countries
in the upper right search field and getting a description of the hovered fan (“In
80 out of 100 occasions, the product price lies between A and B”. where A and
B are the lower and upper bounds of the prediction interval at the indicated
date, respectively).

participants to identify the limitations of our simple prediction model. We
assumed that obvious prediction failures, for example, an almost flat regression
line for clearly periodic price evolutions, would not evoke lively discussions.
Therefore, we deliberately built our study around a specific case of butter prices
in France (data available for 1991–2011) and the Netherlands (data available
for 1991–2019), with two not too obvious shortcomings. First, the model fit the
past data rather poorly (high RMSEA). Second, even though France and the
Netherlands had historically similar prices, the prediction for France largely
diverged from the real data in the Netherlands, suggesting poor prediction
performance.

5.3.3 Study Design

In July–October 2020, we collected qualitative data on our four evaluation
metrics with online semi-structured interviews, quantitative data from Likert-
type questions on trust, and observational data on how participants interacted
with our visual DSS (participants shared their screen during the study).
Figure 5.2 shows the overall structure of our study.
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Figure 5.2: The flow of our study, including 5 phases: an introduction, four
scenarios with one country, four scenarios with two countries, a questionnaire,
and additional questions.

First, participants introduced themselves and we familiarised them with our
visual DSS: we explained how they could compare past butter prices in France
and the Netherlands and see details-on-demand in the visualisation, and we
introduced the price prediction functionality without revealing details about
the underlying prediction model.

Next, participants went through eight scenarios, enabling the Future prediction,
Future uncertainty, Past fit, and Past uncertainty checkboxes one by one,
first for a setting with one country (France; Scenarios 1–4) and then for
a setting with two countries (France and the Netherlands; Scenarios 5–8).
Figure 5.3 shows some representative screenshots. Each scenario consisted
of three phases: (1) we asked participants to explore the visualisation while
thinking out loud (Explore the new component in the visualisation. Explain what
you see. What grabs your attention?); (2) we asked them about their trust
and model understanding (Do you trust the prediction model? Do you
understand how the prediction model works? Which parts of the visualisation
made you say that?); and (3) we quantitatively measured their trust.

Finally, after completing all scenarios, participants reported their experience
with four concepts related to predictive modelling and answered additional
questions about model understanding and usefulness (Which combina-
tion(s) of components do you find most useful to get insights into the prediction
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(a) (b)

(c) (d)

Figure 5.3: Our visual DSS with different sets of enabled visual components.
(a) Scenario 1: the future prediction for France is visualised as a dashed
line. (b) Scenario 2: the future uncertainty for France is visualised as fans.
(c) Scenario 7: the past fit for France and the Netherlands is visualised as dashed
lines. (d) Scenario 8: the past uncertainty for France and the Netherlands is
visualised as fans.

model? Would you like to investigate or explore other things to get insights into
the prediction model? Would you use this visualisation for your job activities?).
In the post-study discussion, we asked participants how they experienced the
study and stressed that our prediction model was not meant for making real-life
decisions.

5.3.4 Measurement Instruments and Qualitative Analysis

To assess usability , we observed participants’ interactions with our visual
DSS and analysed their think-aloud feedback during exploration. As such, we
could study whether participants easily found the information they were looking
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for; understood filtering, clicking and hovering functionalities; and had further
suggestions. In contrast to Likert scales for overall usability (Bangor et al.,
2008; Brooke, 1996), this approach gives concrete insights into how, why, and
which parts of visualisations should be adapted to improve usability.

To quantitatively measure trust in each scenario, we averaged responses to
four Likert-type questions rated on a 7-point range (0–not at all to 6–extremely).
These questions were inspired by a widely-used scale for trust in automated
systems by Jian et al. (2000). Yet, as we considered it unfeasible for participants
to answer all 12 items in this scale 8 times, we selected and adapted the 4 items
that seemed most relevant for prediction models:

1. I am suspicious of the prediction model’s outputs (reverse-scored);
2. I am confident in the prediction model;
3. I can trust the prediction model;
4. The prediction model is deceptive (reverse-scored).

To measure participants’ experience with predictive regression, we combined
self-reported data and indirect experience indicators. First, participants self-
reported their experience with the concepts prediction interval, linear regression,
and time series prediction through checkboxes I know the word (K), I often
use it (U) and I can explain it (E). For each concept, we assigned a score
between 0 (very inexperienced) and 5 (very experienced) based on their answers
(K = 1, K & U = 3, K & E = 4, K & U & E = 5); the average Es served as
a final estimate for self-reported experience. Second, we scored participants’
experience between 0 and 5 based on their background (Eb) and use of jargon
related to statistics or predictive modelling during the interview (Ej). Then, we
used the average of Es, Eb and Ej as an estimate for experience with predictive
regression.

Finally, to qualitatively analyse participants’ feedback, we recorded the
interviews, which lasted 70–130 min, depending on the amount of feedback. We
then thematically analysed 120 pages of transcription, following the 6 phases
from Braun and Clarke (Braun and Clarke, 2012). Specifically, we first coded
our data deductively (i.e., starting from our four metrics) and then inductively
for each metric (i.e., driven by the data instead of preset topics). To guard the
originality of participants’ feedback and respect participants’ efforts to speak
English, we only corrected language mistakes in quotes below when clarification
was needed.
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5.4 Results

This section presents the findings of our study with 10 participants whose
specifics are shown in Table 5.1. First, approaching our visual DSS as a product,
we focus on usability and usefulness. Then, taking an XAI research perspective,
we turn towards model understanding and trust. Throughout, as summarised
in Table 5.2, we also highlight differences between participants who have low,
medium, and high experience with predictive regression.

5.4.1 Usability

Our semi-structured interviews brought up four themes on usability: Under-
standing the visualisation, Visual encoding of information, Interacting with the
visualisation, and Workflow.

Understanding the visualisation: most participants understood the
overall goal, but some visual components need clarification.

Overall, participants were very positive about the visualisation and understood
its main goal. For example, P4 found the visualisation “very readable” and
complimented it for being a “very simple instrument” with a clear aim; P5
described the visualisation as “very easy, simple, clear, and [without] any frills” ;
and P8 stated: “The dashboard I like. It’s very simple and easy to use, so
it’s not too complex or anything like this. [. . . ] It’s just easy to use, gives
you all the information [. . . ] in a very sort of simple way”. Most participants
understood the visual components sufficiently and could use them without
further clarification.

Specifically, participants described the future uncertainty fans as “area[s] in
which the price is statistically expected” (P1), which “shows the spread of [. . . ]
the predicted values around the [prediction] line” (P9). In more economical terms,
P5 talked about “buffer points, which [indicate] the minimum and maximum of
the variation of the future price” and considered the fans’ percentages to be “the
likelihood to be in these buffers”. Many participants furthermore observed that
uncertainty fans enlarge for larger percentages, entailing a trade-off between
precision and correctness: “[If you restrict a 90%-fan to a 50%-fan, then] you
have more accuracy but you don’t have a good prediction”.

In addition, participants correctly interpreted the past fit as the “fit between
the model and the real data” (P5), “normalization of the slope” (P3), “average
trend” (P3, P6), “natural evolution of the curve” (P4), or “total, general shape
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Table 5.1: Participants’ background information, including their experience
with predictive regression ( l low, m medium, h high) as an average of self-
reported experience (Es), background (Eb), and jargon use (Ej). All participants
identified as male and had a post-graduate education level.

ID Profession Country Age Experience (Es, Eb, Ej)

P1 Industry: quality manager in a biscuit
factory; deals with food safety issues,
supply simulations

Greece 45–54 h 4.7 (4, 5, 5)

P2 Industry: food safety auditor for a
certification body; audits companies on
food safety and fraud

Greece 35–44 l 0.6 (0.3, 1, 0.5)

P3 Industry: quality manager in a biscuit
factory; deals with food safety issues,
supply simulations

Greece 35–44 m 2.9 (2.7, 3, 3)

P4 Academia: professor in mechanical engin-
eering; expertise in food quality and life
cycle assessment

Italy 45–54 h 4.8 (5, 5, 4.5)

P5 Academia: agricultural economist; expert-
ise in value chains, food security and
consumption

Italy 35–44 h 3.9 (2.3, 5, 4.5)

P6 Industry: sales manager for a refrigeration
manufacturer; buys raw materials and sells
products

Greece 35–44 h 3.8 (4.3, 4, 3)

P7 Industry: raw materials manager in a
food company; recruits agriculturalists and
keeps bees

Greece 18–34 l 0.2 (0, 0.5, 0)

P8 Industry: settlements coordinator in
a mortgages company; verifying and
approving mortgages *

Australia 35–44 h 3.7 (1, 5, 5)

P9 Industry (Academia): researcher in agri-
culture; expertise in food chemistry and
-microbiology

Greece 35–44 h 4.6 (3.7, 5, 5)

P10 Academia (Industry): researcher in nat-
ural cosmetics; expertise in food science

Tunesia 18–34 h 4.3 (3, 5, 5)

* active in finance, no experience in agrifood.
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Table 5.2: Some topics raised by the participants, ordered by their experience
with predictive regression (P2 and P7 have low experience; P3 has medium
experience; others have high experience).
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Table 2. Some topics raised by the participants, ordered by their experience with predictive regression
(P2 and P7 have low experience; P3 has medium experience; others have high experience).

0 1 2 3 4 5

experience with predictive regression

very inexperienced very experienced

P7 P2 P3 P8 P6 P5 P10 P9 P1 P4

Understanding the visualisation
Past fit and uncertainty are not understood • •
Need for control

More control over the prediction model • • •
Need for comparisons

Comparing countries is relevant • • • •
Comparing products is relevant • • • • •
Comparing prediction models is relevant • •
Need for tailored explanations

Explaining the past data • •
Explaining the model’s development process • • • • •
Explaining the prediction model • • • • • • •
Understanding the algorithmic level

Visual components gradually improve mental model • • • • • • • •

low medium high

In conclusion, it would be helpful to clarify the past fit and uncertainty components,
especially for participants with low experience in predictive regression (see Table 2). To
clarify the uncertainty, adapting the fans’ tooltip could be a start because P6 pointed out
that currently, some might confuse the word ‘occasions’ with ‘iterations’ and therefore
misinterpret the X%-fan as representing “X out of 100 calculations.”

Visual encoding of information: visually encoding uncertain price evolutions as a
line graph with fans was clear yet limited.

All participants understood the visual encoding of price evolution as a line chart, and
also the visual encoding of uncertainty as fans did not seem to cause confusion. Regarding
the latter, P1 and P3 discussed the different shades explicitly: “The more prices you get
scattering around the line, the more, the deeper the shadow becomes [and vice versa]. So statistically,
more prices are expected to be falling in a short distance above or below the line”. (P1) and “as it
goes [from the prediction line] to the borders, [. . .] the possibility it goes down” (P3).

Yet, the visual encoding has two limitations. First, when uncertainty components
are enabled, simultaneously plotting multiple countries can be “a little bit confusing” (P2)
or “a little bit disturbing” (P10) because of the many different colours and the overlapping
graphical elements that hamper hovering specific fans. For example, when P8 plotted
about 15 countries simultaneously, he said bluntly: “Oof. [. . .] Yeah, I’m not really gonna get
much out of that”. Fortunately, participants realised that the trade-off between completeness
and overplotting is their own responsibility: “you cannot compare, I don’t know, 10 different
commodities in 10 different countries, otherwise no one can understand what is shown in the graph”
(P5). Second, although participants understood that the Y-axis unit was not important for
the study, they frequently mentioned that it should be clarified in real-life applications. For
example, P6 joked: “I mean, what is this 300? 300 cows or what?”

of the price evolution” (P10). However, P2 and P7 did not understand the past
fit line and P10 expected details when hovering over it.

Finally, while most participants seemed to intuitively understand the past
uncertainty, they often lapsed into vague descriptions or were unsure how it
was computed; e.g., “it’s the same like before: [. . . ] the uncertainty factor”
(P3) or “I think that you used your future model, whatever the model, and you
tr[ied] to predict the past, I don’t know” (P6; you refers to the interviewer).
Especially P2 and P7 could not get their head around the past uncertainty, with
P2 questioning what others perhaps did not ask out loud: “If you have the real
numbers from the past, what’s important about the uncertainty?” Furthermore,
P10 seemed to misinterpret the prediction intervals for showing accuracy: “past
uncertainty, it gives us like our model is most of the time, 85% accurate, let’s
say, in this point, and at the same point here it’s 90%. I mean it gives us a
better understanding of the model and if it’s accurate or not”.

In conclusion, it would be helpful to clarify the past fit and uncertainty
components, especially for participants with low experience in predictive
regression (see Table 5.2). To clarify the uncertainty, adapting the fans’ tooltip
could be a start because P6 pointed out that currently, some might confuse
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the word ‘occasions’ with ‘iterations’ and therefore misinterpret the X%-fan as
representing “X out of 100 calculations.”

Visual encoding of information: visually encoding uncertain price
evolutions as a line graph with fans was clear yet limited.

All participants understood the visual encoding of price evolution as a line
chart, and also the visual encoding of uncertainty as fans did not seem to
cause confusion. Regarding the latter, P1 and P3 discussed the different shades
explicitly: “The more prices you get scattering around the line, the more, the
deeper the shadow becomes [and vice versa]. So statistically, more prices are
expected to be falling in a short distance above or below the line”. (P1) and “as
it goes [from the prediction line] to the borders, [. . . ] the possibility it goes down”
(P3).

Yet, the visual encoding has two limitations. First, when uncertainty components
are enabled, simultaneously plotting multiple countries can be “a little bit
confusing” (P2) or “a little bit disturbing” (P10) because of the many different
colours and the overlapping graphical elements that hamper hovering specific
fans. For example, when P8 plotted about 15 countries simultaneously, he
said bluntly: “Oof. [. . . ] Yeah, I’m not really gonna get much out of that”.
Fortunately, participants realised that the trade-off between completeness and
overplotting is their own responsibility: “you cannot compare, I don’t know, 10
different commodities in 10 different countries, otherwise no one can understand
what is shown in the graph” (P5). Second, although participants understood
that the Y-axis unit was not important for the study, they frequently mentioned
that it should be clarified in real-life applications. For example, P6 joked: “I
mean, what is this 300? 300 cows or what?”

Interacting with the visualisation: participants did not experience
major filtering or hovering issues; zooming might be handy.

The filtering functionality was clear for all participants. Regarding the hovering
functionality, getting details-on-demand through hovering seemed natural for
both the line chart and the uncertainty fans. One minor remark here is that P5,
P6, and P7 did not spontaneously hover over the fans when they first saw them,
which suggests that a real-life fan chart might need to stress this possibility.
Two participants found the highlighting of hovered uncertainty fans suboptimal.
First, P8 regretted that he could not simultaneously highlight a fan and see
price details (“as soon as I move my mouse out, I lose it [the fan tooltip], so it’s
very fiddly”); and he proposed to allow pinning the fans. Second, P10 agreed
that highlighted fans obscure other details and suggested altering their visual
encoding from fans to lines that indicate standard deviations along with the
corresponding probabilities.
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In addition, P10’s interactions in Scenario 7 demonstrated that a zooming
feature could improve usability: P10 disabled the future uncertainty to reduce
the Y-axis’ length and thus artificially zoom in on the past fit lines to better
see small-scale changes.

Workflow: the current workflow for selecting products and countries was
clear, but alternative workflows might be more efficient.

All participants understood the current workflow of first choosing a product
and then selecting one or more countries. Yet, P5 and P9 proposed alternative
workflows that could improve usability when focusing on a fixed set of countries.
Tapping into the idea of focusing on a single country, P9 found it “a bit annoying
that anytime we are choosing a product [we need] to select again a country;
[. . . ] if you choose a product, you can play with the countries, but if you choose
a country you cannot play with the products”. Thus, to make the process of
comparing different products for the same country less “time-consuming”, he
would reverse the current selection order. Generalising this idea, P5 suggested a
two-step selection workflow: an initial step to “include all I want in the analysis–
for example, different products for the same country or different countries for
the same product”, followed by visualising the selected information. Then, “a
sort of matrix with all the countries I have selected” instead of dropdown lists
would allow to quickly (de)select countries or products, which is, for example,
convenient to remove overlap in the visualisation.

5.4.2 Usefulness and Needs

Participants raised two themes on usefulness (Overall usefulness of the
visualisation and Usefulness of the visual components) and three themes on
their needs (Need for control, Need for comparisons, and Need for tailored
explanations).

Overall usefulness of the visualisation: a visual DSS similar to ours
was deemed useful for different tasks in agrifood or finance.

All participants agreed that visual DSSs similar to ours can be useful for different
tasks in agrifood or finance. Generally speaking, P2 said that “it’s a very good
tool for everyone in the food industry” and P5 expected that “a lot of people
are looking for something similar”.

More concretely, participants indicated that visualising predicted product prices
can benefit industrial and academical agrifood parties. For agrifood companies,
our visual DSS could be “useful mainly in order to make future schedules” (P9)
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such that “people who make decisions [and] who need insights in future price
evolutions [. . . ] can make contracts [with suppliers] for the coming years in
order to avoid to pay too much” instead of reacting to the market (P3). In
addition, P2 saw a link with food fraud detection: “the food price many times
affects the food fraud cases [so] it helps companies to predict [the number of] food
fraud cases”. In agrifood research, P4 explained that researchers often study
economical aspects such as demand and logistics, so he found our visualisation
“very interesting [. . . ] to make some evaluation about the importance of some
particular market and which is the prospective of that market”.

Participants also saw more general applications for our visual DSS. For example,
P10 stated that exporting companies would be interested in predicting demand in
foreign countries, and P8 indicated that financial companies would be interested
in predicting interest rates because “this sort of helps you make better business
decisions [. . . and] be better prepared”. Thus, our visual DSS could be more
useful when people can upload and visualise their own data. Furthermore, our
visualisation is not bound to be a standalone tool: P1 “would expect to see this
dashboard attached in [a full analysis of the prediction model]; a text, showing,
explaining how it works” and P3, anticipating that the prediction model could
consider climate change and geopolitics, saw the opportunity to extend our
dashboard with additional visualisations of, for example, temperature and
carbon emissions.

Usefulness of the visual components: how useful visual components
were depended on the context, but uncertainty was a natural requirement
for many.

Participants often mentioned that the usefulness of the visual components
depends on the desired insight. For example, while P5 found all components
“very useful” to analyse a single time series, he would probably hide the past fit
and past uncertainty when comparing multiple time series: “It depends in my
opinion on what you want to visualise”. In addition, P9 distinguished between
obtaining precise values and drawing overall conclusions about the trend: “You
need [. . . ] the future prediction to have an exact number [. . . ] but just to make
conclusions, you don’t need it. You just need the [future] uncertainty and the
fit”. Last, P6 noted that he did not need an explicit dotted line to get a feeling
about the general past trend. Given these considerations, the flexibility to
enable and disable visual components in our visual DSS seems very useful.

Regarding the uncertainty components, most participants considered them a
natural requirement because of the predictive context. For example, P1 said
“Whenever we need to predict something, there is always an uncertainty in
our prediction. So it’s more something that I would expect”. and P8 agreed
“There are always going to be [macro level] factors that sort of change the
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prediction”. Some participants even asked for future uncertainty representations
right in Scenario 1: “It could be interesting [. . . ] to have the minimum and
maximum value in that prediction period. A sort of standard value. [. . . ] I
expect [. . . ] a sort of uncertain value [instead of] a precise value”. (P4) and
“Maybe you should add some best cases and worse cases” (P10). While discussing
uncertainty, participants also touched upon a fundamental trade-off: “It’s like
a double-shaped blade, you know. It gives you more liberty in choosing which
kind of occasions you will be having, and at the same time, it gives you like not
accurate results”. (P10), and “The thicker the lines [fans] become, the more
useless the data because [. . . ] everything is within specs, but you see you have
a huge variation” (P1). P4 added that, instead of multiple uncertainty levels,
he only required a 1σ-interval. Overall, it thus seems essential to visualise the
uncertainty in predictions, potentially allowing to modify the number of shown
uncertainty levels.

Need for control: some participants requested additional control over
the visualisation or the prediction model.

Some participants proposed additional features to explore the visualisation.
Specifically, P5 suggested to allow filtering on specific time intervals; P5 and
P10 proposed to allow changing the currency such that end users can better
relate to the price evolutions; and P8 was looking for more in-depth pricing
details such as the price per unit, retail price, and trading indicators such as
the moving average convergence divergence.

In addition, some participants highly experienced with predictive regression
voiced a need for more control over the prediction model (see Table 5.2). For
example, P1 explained that he wants absolute control over prediction models:
“I use quite often the regression, the data analysis function in Excel. So I use
the data in the way I want. I fit the models that I consider to fit best for the
case. [. . . ] The visualisation [. . . ] would be quite helpful but based on what I
have seen until now, I wouldn’t [. . . ] consider very much the prediction values.
I would only use it for historical data acquisition”. P5 also seemed to allude to
this by stating that our visual DSS would be “extremely useful” if scientists and
practitioners could download the available data and graphs for further analysis.
Other requests for control were changing the predicted time span (P2, P4, P8)
and the time frame used for training the prediction model (P1).

Need for comparisons: participants found it important to simultan-
eously compare countries, products, and prediction models.

Participants across all levels of experience with predictive regression stressed
the relevance of comparing countries (see Table 5.2). For example, P9 said: “Of
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course comparing different countries is really useful because we are talking about
[. . . ] a unite Europe [and] you might have incoming products from different
countries. [. . . You] might have a purchaser from Italy and one from Germany,
so you have both as an alternative to buy materials”. Given this united European
market, P8 added that he liked comparing prices with the European average.

Regarding the need to compare products, two ideas to extend our visual DSS
arose. First, P3, P5, and P9 suggested to compare similar products (e.g.,
cereals, sweeteners, vegetal oils) in the same graph to understand potential
relations between them. Such insights could, for example, be useful for farmers
and regulatory bodies: “the decision for farmers to produce rice instead of
maize, or wheat instead of barley and so on, could be strongly conditioned by
the provision [. . . ], and regulatory bod[ies] for the market can provide specific
support for specific farmers”. (P5). Second, P10 suggested to simultaneously
compare different products: “For instance, if you want to make a muffin, you
would have like flour, wheat, some milk, some eggs, flavour vanilla or chocolate.
So you wanna keep each ingredient into consideration. [. . . ] Maybe you can
have like a [curve] for each ingredient [. . . and see the total] cost [for] the final
product”.

Last, participants experienced with predictive modelling would find comparing
different prediction models useful to get an idea about how well they agree on
their predictions and to, as P8 mentioned, follow the most frequent prediction,
giving more weight to sophisticated models. Still, P1 emphasised: “[I] would
expect each model to be discussed: why does this model predict different values
from another one and the reasoning behind that”.

Need for tailored explanations: participants required tailored
explanations about different aspects with different levels of detail.

Participants brought up four different aspects for which they needed
explanations, and, interestingly, Table 5.2 shows that these participants had
low to high experience with predictive modelling. First, P1 and P4 required a
discussion of the past data and sudden peaks or troughs, backed by economical
factors. Both P9 and P10, however, suspected that people active in industry
would be most interested in explanations regarding the future, rather than the
past. Second, participants wanted to know more about the provenance and
accuracy of the raw price data, the model developers, the data processing, and
the training of the prediction model. Third, P2 and P6 wanted to know how
reliable the predictions were: “The [end user] needs to feel that the model is
predicting OK without knowing though what the model is doing. [. . . ] You need
somehow to explain to the end user what could be the prediction capability”. (P6).
Fourth, typically triggered by the steep predicted price increases in Scenarios
1–8, many participants requested explanations about the prediction model itself.
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For example, P3 asked about the model’s input factors: “For me, it’s very
critical to understand what factors this model takes into account to predict such
a high rise of the butter [price].”, and P4 wanted “a basic idea on how the
prediction model works rather than going with something sort of blindly, [to see]
evidence that this all works”.

Furthermore, two participants had opposite views on the required level of
detail in explanations. On the one hand, P1 requested full transparency of
the prediction model: “If it is a regression, I would be interest[ed] to see the
equation that comes from the model. I would expect to see a discussion on the
price variation, the reasoning”. On the other hand, P6 vividly argued that he
did not need this amount of detail: “ I don’t believe you need to give it to a
third party, to a user, when [they are] looking at data, the mathematics behind
the model. [. . . ] In my job, for example, one of the most important things is to
know raw material prices [. . . ] and I need to have a good prediction. Now how
the prediction works? I really don’t care”.

The two observations above seemed to be part of a more general phenomenon:
many participants alluded to tailoring explanations, i.e., adapting them to
different contexts and to the people that need them. For example, P4 attributed
his need for a description of the model to his “research mind”, but added that
seeing uncertainty already filled part of that need, while economists would
probably require more details: “After see[ing . . . ] the statistical evaluation
[uncertainty], in my opinion, my need [for a more detailed explanation] is
lower because I of course consider the fact that perhaps they derived from some
economical model that are at the basis of this evaluation. [. . . ] Perhaps for
economist[s . . . ] it would be more interesting to know something more about the
model. But of course, this is not my topic so for me it’s sufficient what I see in
the graph”. Similarly, when P1 asked for “a very thorough discussion” of the
prediction model, he added: “But this is me, OK. I’m an engineer, I’m quite
experienced in mathematics and statistics and you understand, I know how it
can work. I don’t know if the same discussion was done with somebody who
is not quite good in maths or in statistics, what his[/their] perspective would
be.” Finally, while P5 found our visual DSS useful for educational purposes, he
acknowledged that he would require more a detailed explanation when using
it in high-stakes contexts: “If I need to use it for a practical or a professional
use, like the support for the country or the region, for a specific policy, and so
on, I think I have to give them, to guarantee them about the quality of the data.
And if I don’t know exactly the model, what you have included and so on, and I
couldn’t replicate your analysis, it’s quite impossible to use it as a standard or a
benchmark”.
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5.4.3 Model Understanding

This section uncovers how the visual components and functionalities in our
visual DSS impacted participants’ understanding of the prediction model.
Three themes, Understanding the algorithmic level, Understanding the outcome
level, and Understanding by comparing countries, reveal that understanding
manifested itself on an algorithmic and an outcome level.

Understanding the algorithmic level: the visual components improved
participants’ understanding of the prediction model’s technicalities, but
only gradually.

In Scenarios 1 and 5, all participants indicated that simply plotting predictions
does not invoke model understanding. For example, P5 stated: “I have no
idea which kind of variables you included in the model, if the model is based on
different variables, I don’t know, so the general international market or a policy
decision, a local decision in France, or climate change or climate information.
[. . . ] and the technological evolution or [. . . ] macroeconomic data”. This lack
of understanding was typically followed by a request for an explanation.

Yet, the stepwise introduction of extra visual components improved many
participants’ mental model of the prediction model, ranging from a better
intuition to identifying the true modelling technique (see Table 5.2). To P3, P4,
and P8, the future uncertainty suggested the model to be a statistical technique:
“It was more clear to me that we’re not talking about, let’s say, absolute values,
but talking about the statistical model, so there you can see the possibility of
the price evolution of the butter to be inside this space” (P3). After enabling
the past fit, P4 and P10 noticed that the past fit and future prediction formed
a continuous curve, which gave them a better idea about how the prediction
was constructed: “[I] know in a better way the model [. . . ] the evolution of the
future is more clear [. . . ] Of course, I don’t know which is the mathematical
model but I know that this is in a sort of curve, fit that you obtain, and so the
model, I see the input from this evolution of the data” (P4). Visualising the
past uncertainty sometimes further reinforced understanding the link between
past fit and future prediction: P4 noted that “with this representation [. . . ] the
future prediction is completely integrated in the previously data” and also P6,
while unsure about how the past uncertainty was generated, got the feeling that
the prediction was based on the trend line. After seeing the uncertainty and
fit components, P1, P8, and P9 even strongly suspected that the prediction
model was a regression. For example, P1 correctly identified the prediction as a
third-degree polynomial, but he admitted that the visual components did not
reveal the precise mathematical equation.
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P6 explained how the “step by step approach” allowed him to “understand
parts of how the model works” without revealing the technicalities: “If you
would only show me the first picture, no, I would not be able to tell you how
the model works, but going to the future uncertainty and past uncertainty, and
presenting also the trend line, then OK, you get a clearer picture of how the
model probably works. But still, the details, it’s not something that I think
you can get with these simple steps”. Furthermore, he added that none of the
visual components was all-enlightening: “Obviously it had to do with the whole
sequence. [. . . ] Step by step then you can get it. But it’s not like you go like
you know ‘wow, wow, this is clear now’. [. . . ] it is a gradual, let’s say, picture”.
Interestingly, to improve the mental model faster, P4 suggested an alternative
“more logical” order for enabling the visual components: he would first show the
past data, past fit, and past uncertainty to explain “that you have a statistical
consideration” and only then show the future prediction and future uncertainty
to clarify that they are “derived from the past fit”.

Understanding the outcome level: the visual components allowed
participants to interpret model outcomes and assess their accuracy.

Participants often commented that uncertainty did not explain the prediction’s
upward trend. For example, P5 said that “uncertainty doesn’t explain the
prediction, it’s just more inclusive” and P1 added that he did not know whether
he “should expect that the price would increase or would decrease sharply” after
the prediction horizon.

However, the uncertainty and past fit components gave participants insights into
model performance. In particular, P5 explained that the uncertainty revealed
how well the model fits the data: narrow uncertainty meant a good fit; wide
uncertainty meant a worse fit. The past uncertainty was also “a sort of measure
of the robustness of the model” (P5), which gave a “better understanding of
the model and if it’s accurate or not” (P10) and indicated whether “the past
performance might repeat itself in the future, providing that the trend remains
the same” (P8). The past fit, then, allowed participants to detect outliers due
to exceptional market events. For example, when P1 enabled the past fit, he
said: “[The] model has explained reasonably, reasonably, the variation of butter
price throughout the decades. Could not predict the peak that occurred in 2008.
Might have been an issue due to the financial crisis [. . . ] We don’t have this
information but something has happened there that could not be predicted”.

Finally, P6 proposed to assess model performance by comparing a country’s
past data with what the model predicts without that data: “why you don’t [. . . ]
compare what the model told us and what actually happened? Then you can
evaluate also the effectiveness of your model”.
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Understanding by comparing countries: comparing countries had
cons for understanding the algorithmic level, but pros for understanding
the outcome level.

On the algorithmic level, the feature to compare countries sometimes led to
misunderstanding the model’s technicalities. This was illustrated by P3, who
in Scenario 5 wrongly assumed that, to predict product prices in one given
country, the prediction model also considered data from other countries: “This
model probably took into account what happened in the region, I mean in Europe,
during this period of time. So that’s probably why the price of the butter in
France is going to rise so much. [. . . ] now I can understand, let’s say the
reasoning behind this slope, why this slope is very steep [and] goes up”.

On the outcome level, however, comparing countries allowed participants to
better understand the model’s performance. P4 and P10, for example, were
especially interested in the model’s consistency and expected that countries with
similar price evolutions in the past would have similar price predictions. More
importantly, in our experiment, showing data from France and the Netherlands
allowed participants to compare the model’s prediction for France with real data
from the Netherlands. For P1, “that was what actually convinced [him] that the
model is quite unreliable” because “we can see that the actual data of Netherlands
are far away from the prediction of the forecasted data for France”. Similarly,
P5, P6, and P8 emphasised that the divergence in price was accentuated by
the fact that a large portion of the real data for the Netherlands did not lie
inside the future uncertainty fans for France: “the prediction buffer which should
include all the data, more or less because it’s 99% of the variation, doesn’t
include, doesn’t encompass the real data [. . . ] If we assume that [. . . ] data of
the Netherlands would be a reliable prediction [for France. . . ] there is a big
problem with the prediction model” (P6).

5.4.4 Trust

Our results on trust consist of two parts. First, we present participants’
quantitative trust evolution over the eight scenarios to spot differences and
similarities. Next, we contextualise observed trends with the thematically
analysed qualitative feedback.

Quantitative Results on Trust

Figure 5.4 shows the evolution of participants’ reported trust scores over all
scenarios. Overall, participants had very different trust evolutions. Yet, there
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Figure 5.4: Participants’ trust in the prediction model over eight scenarios.
Scenarios 1–4 showed data for one country; Scenarios 5–8 showed data for two
countries. Lines are slightly jittered for clarity. The legend includes the level of
experience with predictive regression ( l low, m medium, h high).

is a clear distinction between two groups: P1, P5, and P6 converged to low
trust, whereas the other participants converged to at least rather trusting
the prediction model. The level of experience with predictive regression did
not explain this distinction because, for example, while P1 and P4 had the
highest experience scores, they were both on different extremes of the trust
scale. Another observation is that few participants reported dramatic changes
in trust: only P6 and P10 have a difference of at least 2.5 between their minimal
and maximal trust scores.

Qualitative Results on Trust

Four themes impacted trust in the prediction model. The first two themes, Model
performance and Model understanding, were heavily impacted by expectation
violation and expectation agreement: when participants encountered things
that did not meet their expectations, their trust typically decreased, and vice
versa. The other two themes, Presence of uncertainty and Explanations, tapped
into what participants required for growing trust.



RESULTS 103

Model performance: seeing the model performance affected how
participants assessed the model’s trustworthiness; seeing model failures
had a negative impact.

In Scenarios 1–4, participants assessed the prediction model based on the past
fit and past uncertainty. The past fit did not decrease most participants’ trust
because it seemed to fit “reasonably good the price variation, though in quite
some [. . . ] rough estimation” (P1) and thus “gives more robustness to the model”
(P5). Yet, for P6, the past fit highlighted that specific outliers were not foreseen
by the model, which made him more unconfident: “Why does not predict that it
will have a peak and then go down again. [. . . ] It does not persuade me. [. . . ]
I’m losing my confidence with a trend line”.

Likewise, the past uncertainty led to mixed trust responses. On the one hand,
some participants indicated aspects that increased their trust. For example, for
P4, the option to do an “evaluation of the data during the past” increased his
trust in “the correctness of the model”. P10 made a similar argument based on
the fans showing the model’s accuracy: “I think this past uncertainty will add
more credibility to our prediction model [. . . ] I think I’m better trusting this
model, [. . . ] I can have a better understanding [. . . ] of the prediction model as
it goes over the years”. Furthermore, P8 observed that most of the data points
lay inside the uncertainty fans, but found it reassuring that some lay outside:
“[the price] falls out every now and again, which I mean, it does happen with
everything. [. . . ] I guess it increases my trust because if it was too perfect,
you’d be like, you know, I mean, nothing in life is 100% certain, so why would
this thing be?” On the other hand, P6 actually became more hesitant when
seeing a peak outside the 99%-fan: “So there is a problem there, right? I know
that it is only for a small period of time, like few months that the model fails
over whatever I see here, like 25 years. But still, it fails. Is it acceptable? I
don’t know. I mean, if it was inside the band that I see here, maybe I would be
happy”.

In Scenarios 5–8, participants often assessed the prediction model by comparing
the prediction for France with the real data or the past fit for the Netherlands.
Many participants noticed a divergence between both: “the butter price in
France historically was closely linked to the butter price in Netherlands and we
can see that the actual data of Netherlands are far away from the prediction
of the forecasted data for France” (P1). As Figure 5.4 shows, this resulted in
a huge drop in trust for P1, P5, P6, P8, and P10 because they expected a
prediction for France similar to the data for the Netherlands. For example, P1
said that he “would not trust this model at all” because it “convinced me that
the model is quite unreliable”, and P6 motivated: “I don’t trust the model. You
see, the real data was totally different than the prediction. [. . . ] obviously, you
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prove that in a sense there are flaws in the model prediction”.

Yet, not all participants experienced the divergence as an expectation violation.
For example, P4 pointed out that the long-term performance seemed good
and hypothesised that market events might have caused the divergence: “in
2010 you have a differentiation. [. . . ] the events that you have in Netherland
are perhaps due to particular events that you had there, which I don’t know,
of course. [. . . ] in the extrapolation, [. . . ] the values are different, but the
behaviour is very similar. [. . . ] But I consider that at the end, five years later or
10 years later, also in Netherland you have the same price”. P8 make a similar
remark in Scenario 6, restoring his trust afterwards: “if you look at around 2016,
the price prediction is way off. Way way off, but it sort of meets the further it
goes along. So I think [. . . ] if I was trying to make a price prediction like five
years in the future or something, I trust it more, rather than, I would if it was
one or two years in the future”. However, P5 called these observations of ‘good’
long-term performance a “bias in the visualisation” caused by the prediction
for France coincidentally stopping at the real peaks of the Netherlands.

Model understanding: participants’ trust reactions differed depending
on how they understood the prediction model on an outcome or algorithmic
level.

Participants’ model understanding on an outcome level influenced their trust.
A typical example was Scenario 1, where the prediction line caused a lot of
scepticism because it violated many participants’ expectations for two reasons.
First, participants could not understand its steep slope. For example, P10 joked
“it can’t be like this: it goes like higher up in the sky. [chuckles]” and P6 added:
“The trend of the previous ten years, no 20 years, does not imply that you’re
gonna have this rapid index increase”. Instead, some expected a price behaviour
“similar like the last 10 years, let’s say” (P3). Second, participants noticed that
it did not have peaks or troughs like the past data: “The thing that I’m worried
about it that the curved line is like so decent, so perfect, so shaped”. (P10); and
“that peak that I see on October of 2007 and that trough that I see on March
of 2009 is not what I see in the model prediction, comparing five years to five
years”. (P6). However, most participants still reported a trust score above
neutral because of mitigating considerations that agreed with their expectations.
For example, P6 noted that in the last few plotted years, “there has been an
increasing rate which does not look too different toward what the prediction
model has there”. Furthermore, due to “the global inflation and the economic
crisis etcetera, and a lot of pressure on the market places” (P10) increasing
prices seemed plausible: “usually we have increase prices, not decreases [laughs],
so that’s why I’m more in the part that I’m trusting the prediction” (P9).
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Participants’ trust was also affected by their model understanding on an
algorithmic level. First, understanding decreased trust under expectation
violation. For example, P6 understood that predictions were based on the past
fit, but observed several unexpected things, which is why he insisted: “I have a
better understanding how the model works, but I don’t trust it, I insist”. Second,
understanding increased trust under expectation agreement. For example, in
Scenario 5, P3 gained trust because he built a (wrong) mental model that met
his observations: “this model probably took into account what happened [. . . ]
in Europe [. . . ]. So that’s probably why the price of the butter in France is
going to rise so much. [. . . ] I would say that I’m not suspicious anymore.
[. . . ] Because now I can understand, let’s say the reasoning behind this slope”.
Furthermore, P9 reported high trust scores because he saw “nothing strange.
It’s just what I was expecting to see. [. . . ] it’s just a regression [. . . ] for me
that I’m understanding how the models are working now, it looks normal”. One
comment here is that P9, upon seeing the diverging behaviour of France and
the Netherlands in Scenario 5, also mentioned: “it might, change my trust for
the model as a model, OK, and how you incorporate the model in your data set
but not for the prediction that we are generating for the future. Maybe a better
model will give you better [results]”. This suggests that P9 based his trust on
how the prediction outcomes were computed, rather than whether regression
was a suitable technique.

Presence of uncertainty: seeing that the prediction model accounted
for uncertainty did not decrease participants’ trust.

In Scenario 2, none of the participants indicated that their trust in the prediction
model decreased because of the presence of future uncertainty. On the contrary,
most participants’ trust increased. P9, for example, explained why: “the more
descriptive the model becomes, and the more alternatives that it gives you, it
makes you trust more. When you have just a line, you more or less, you cannot
believe that things in real life are so accurate, right? [chuckles . . . ] I would say
that future prediction without future uncertainty is not much trustful”. While
P1 and P3 agreed with this, they both stressed that the uncertainty did not
increase their trust dramatically because it did not take away their need for
an explanation: “it’s a model that takes some reasonable uncertainty, but still
I cannot trust it because I don’t know how it was developed”. (P1); and “I’m
more, let’s say, confident about this prediction model. But still, I want to know
the reason why the butter has to go up”. (P3).

For P4, the uncertainty overall generated more trust because it suggested the
prediction model to be the product of scientific studies: “I trust in a more–I
suppose that behind this value you have some studies, some studies that come
from your research for your ability”. Furthermore, related to algorithmic model
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understanding, P4 believed that the uncertainty suggested the prediction model
to be of a statistical nature: “I prefer the fact that the model works in a statistical
way because with some consideration, I suppose this is more right in a model
that works in the future. [. . . ] I’m more and more trusting, trust about the
correctness of the model”.

Explanations: participants considered explanations about the develop-
ment process and the prediction model requisites for building trust.

To trust the prediction model, participants mentioned that they needed an
explanation about the development process and data provenance. For example,
P1 said that “in order to trust a prediction model, I need to know how it was
developed”. Furthermore, P4 and P5 alluded to the importance of who developed
the prediction model. P4 referred to trusting the model developers’ competence:
“when I approach information that come from an organisation or something like
you, I suppose, my behaviour is to accept this evolution because I suppose that
you have the competence to develop a model. [. . . ] I have to believe in you with
some [. . . ] suspicious behaviour”. In turn, P5 argued that a model stemming
from an official institution might be more reliable: “if such a prediction comes
from an official body like FAO or World Bank or so on, could be more reliable,
I can say. If come from a university [. . . ] it’s not an official body and it’s
more difficult to understand. So I just can imagine that [. . . ] when a World
Bank provide prediction, it’s the fruit of the convergent opinion of different
practitioners and scientists”. Concerning the data provenance, P1 asked about
the accuracy of the given historical data because “in order to trust a prediction
model, I need to know [. . . ] what is the raw data [in]put”.

Participants also considered an explanation about the prediction model itself
key for building trust. For example, P5 did not trust the prediction in Scenario 1
because “I have no idea how you provide this prediction, how you calculate it
and the model behind. [. . . ] there is no explanation of the model, and it’s quite
difficult to trust in the model without any description”. P1 agreed: “whenever I
have a prediction model, I always try to find the physics and engineering behind
that. If there is no physics explanation or engineering explanation, I’m quite
sceptical”.

5.5 Discussion

This section answers our research questions by discussing our quantitative and
qualitative results. Then, based on our observations, it underlines the need for
user-centred approaches in agrifood to increase the uptake of visual DSSs.
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5.5.1 A User-Friendly and Useful Visual DSS

Our results show that participants were generally very positive about our
prototypical visual DSS in terms of usability (RQ1): the visualisation, its
interaction possibilities, and the general workflow were clear overall. In addition,
participants imagined that a visual DSS similar to ours would be useful as
support in several decision-making contexts, including food fraud detection,
business scheduling, and market evaluation (RQ2). They also highly appreciated
that our visual DSS fulfilled their need to compare countries and that visual
components could be restricted to those relevant for desired insights. Thus, our
prototype seems to be a user-friendly flexible basis for more advanced visual
DSSs that extend our interface, and could be embedded in (dynamic) analytics
reports.

Yet, we recognise two points of attention related to people’s experience with
predictive modelling. First, while many participants stressed the usefulness
of uncertainty, our prototype could not remove all confusion around past
uncertainty and past fit. Thus, especially for people who are less experienced
with predictive modelling, it seems necessary to elaborate on the past fit and
uncertainty components when used in a visual DSS. This could be realised with
more detailed tooltips, a brief information screen, or—as suggested by Sacha
et al. (2016)—a simple tutorial with some exemplar usage scenarios. Second,
especially people with high predictive modelling experience could have a need
for controlling and comparing different prediction models. To meet this need,
visual DSS in agrifood could draw inspiration from visual analytics systems
evaluated in other domains (Ali et al., 2019; Badam et al., 2016; Bögl et al.,
2014).

5.5.2 Tailoring, Tailoring, Tailoring: Different End Users,
Different Needs

Participants covered three important needs (RQ2): controlling the visualisation
and prediction model; comparing countries, products and prediction models;
and getting explanations about the past data, data processing, prediction
reliability, and prediction model. Interestingly, other studies on predictive
DSSs also revealed a need for comparison. For example, comparing cows’ milk
production allowed animal researchers to identify trends, clusters, and anomalies
(Di Silvestro et al., 2014); and product demand analysts expressed the need to
compare prediction performance for similar products (Sun et al., 2020).

Overall, participants’ needs seemed heavily subject to their personal background
and job activities. This shows the importance of tailoring visual DSSs and
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explanations on at least three levels. First, tailoring towards the application
context: the specific agrifood subdomain and the overall goal of the visual
DSS determine which functionalities and visual components are useful. Second,
tailoring towards experience with predictive modelling: for people with low
experience, an intuitive understanding of the prediction model and little control
over the prediction model might suffice, whereas people with high experience
might require mathematical explanations and control over the prediction model.
Third, tailoring towards tasks: different tasks and desired insights might require
different visual explanations, similar to what Gutiérrez et al. (2019b) argued
for.

5.5.3 Gradual Model Understanding through Visual Analysis

The visual components and comparison functionality in our visual DSS affected
participants’ model understanding on two levels (RQ3). On an algorithmic level,
many participants gradually grew a better intuition of the model’s technicalities.
In XAI terms, the visual components thus served as explanations that fostered
their mental model. On an outcome level, participants could better interpret
predictions and assess their accuracy.

However, some participants created mental models that did not stroke with
the real regression model. For example, they assumed that the model
based its predictions on price evolutions in multiple countries or considered
additional input variables such as climate and geopolitics. This suggests that
complementary explanations are necessary to avoid wrong assumptions, bearing
in mind that these explanations should balance soundness and completeness
(Kulesza et al., 2013): simply adding more information does not necessarily
spark useful mental models. Other participants’ model understanding did not
improve because they could not analyse the visualised information thoroughly,
most likely due to low experience with predictive regression or time series
analysis overall. To grow correct model understanding, such end users seem to
require more guidance in the data analysis process; it is unclear whether the
current exploratory nature of our visual DSS fits this need.

5.5.4 Trust Is Multi-Faceted and Evolves

Our results subscribe to the multi-faceted and evolving nature of people’s trust
in a prediction model (RQ4), similar to many previous studies (Hoff and Bashir,
2015; Holliday et al., 2016; Nourani et al., 2020; Ooge and Verbert, 2021). We
identified four themes that influenced people’s trust: the model’s performance,
understanding the model, uncertainty in the model’s outcomes, and explanations
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about the development process or the prediction model itself. The former two
themes were strongly coloured by whether participants’ expectations were
violated or met; the negative impact of expectation violation is in line with
findings from Kizilcec (2016). The latter two themes covered what participants
deemed necessary to grow trust. The fact that participants required the presence
of uncertainty for building trust reinforces the call for incorporating uncertainty
in visual DSSs for agrifood.

We observed clear evidence of trust calibration (Sacha et al., 2016): participants’
trust was based on a continuous trade-off between the aforementioned four
themes. The direction in which their trust evolved then depended on which
theme was most dominant. For example, most participants initially focused
on requiring explanations. Some then evolved to distrusting the prediction
model due to low performance, whereas others developed more trust due to
observations that matched their model understanding. This explains the different
trust evolutions in our quantitative measurements. An important note here is
that the quantitative scores are hard to compare directly because participants
typically have different calibrations for scoring. On an individual level, though,
we found that most participants’ trust scores did not change drastically over the
eight scenarios. For participants with low experience in predictive modelling, this
was most likely due to their inability to fully analyse the visualised information.
Why these participants trusted the prediction model nevertheless is unclear.
Potentially, factors such as good usability fostered their trust, or the participants
reported what they conceived as desirable.

5.5.5 Fostering Appropriate Trust Through Usefulness and
Meeting Needs

While our results presented four evaluation metrics and their corresponding
themes separately, some themes are connected or partially overlap. Figure 5.5
summarises all themes together with their most relevant relations grounded
in our qualitative data. The relations clearly link usefulness to trust, either
directly, or indirectly via model understanding.

Two direct relations concern uncertainty and explanations. First, while
uncertainty was considered a natural and useful requirement for bringing nuance
to predictions, participants also considered it a requisite for building trust.
There exist interesting parallels in other domains: for example, people tend
to discount weather forecasts without uncertainty (Franconeri et al., 2021).
Second, participants often stressed a need for explanations about the prediction
model and its development process, adding that they could not build trust
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Understanding the visualisation
Visual encoding of information
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Trust
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Overall usefulness of the visualisation
Usefulness of the visual components
Need for tailored explanations
Need for control
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Understanding the algorithmic level
Understanding the outcome level
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?

Figure 5.5: Summary of the themes on usability, usefulness and needs, model
understanding, and trust. Some relations between themes are indicated with
arrows; themes are reordered to avoid overlap.

without them. This illustrates the relevance of XAI research into the utility of
explanations (Davis et al., 2020).

Two indirect relations link usefulness to trust through model understanding.
First, the visual components in our DSS were deemed useful for understanding
the model on an algorithmic level. Control over the prediction model and tailored
explanations about the prediction model were expected to facilitate the same. In
turn, observing things that agree with model understanding led to increased trust.
This suggests that improving model transparency with tailored explanations, for
example carefully designed visualisations, can foster appropriate trust, which is
in line with common beliefs in the XAI community (Gunning and Aha, 2019).
Second, the visual components and the functionality to compare countries in
our DSS allowed participants to better understand model outcomes, which in
turn revealed model performance. Seeing the prediction model’s performance
allows assessing its trustworthiness, which is essential for appropriate trust (Han
and Schulz, 2020; Solhaug et al., 2007).

5.5.6 Taking a Step Back: Increasing Uptake of DSSs in
Agrifood with User-Centred Approaches

Before concluding, we reflect upon the broader impact of our findings for
agrifood. Central in our overall story was the lacking uptake of (visual) DSSs in
agrifood. Rose et al. (2016) pointed out that trust is a key factor for increasing
uptake. Quotes from our interviews such as “I think that for a scientist I can
use prediction data only if my trust on this data is full” (P5) and “you don’t
have the time to [. . . ] explore if the model works or does not work. [. . . ] I just
want to believe what I have in front of me” (P6) indeed seem to confirm that
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people will not use applications they distrust. From this point of view, it seems
reasonable that scholars and practitioners in agrifood and other domains often
advocate for designing DSSs that increase trust.

However, simply designing for increasing trust is not always desirable and should
not be the final goal because trust eventually manifests itself when applications
prove to be reliable and useful over time (Davis et al., 2020). Our results,
summarised in Figure 5.5, support this claim: the relations between usefulness
and trust suggest that useful and tailored visual DSSs may eventually foster
appropriate trust. Therefore, it seems recommended to apply user-centred
approaches to design useful DSSs that meet end users’ needs. In the long run,
this can foster appropriate trust and in turn uptake. Furthermore, user-centred
approaches have the additional asset of exposing people to new technologies
(Parker and Sinclair, 2001), which can also stimulate trust (Rose et al., 2016).
Thus, user-centred approaches seem vital for ameliorating the current low uptake
of visual DSSs in agrifood.

5.5.7 Limitations and Transferability

Our research is subject to some limitations. Most importantly, our sample
of 10 participants is most likely too small to achieve full data saturation in
our qualitative results. Yet, it is encouraging that our trust themes largely
correspond to those found in our pilot study (Ooge and Verbert, 2021). Larger
studies could investigate whether more themes emerge concerning trust as well
as the other evaluation metrics. To further validate our observed differences
between people with different levels of experience in predictive regression, it
would be particularly interesting to include more people with low or medium
experience. Furthermore, future work can investigate the transferability of our
results to other domains such as finance and healthcare, where predictive models
play an important role too. Since our sample contained only one participant
active in finance, we cannot draw strong conclusions on potential differences
with agrifood yet. Finally, as good performance is a core factor for uptake of
DSSs (Rose et al., 2016), real-life applications based on our prototypical visual
DSS should include suitable models for forecasting time series, for example,
exponential smoothing or LSTM (Brockwell and Davis, 2016; Hyndman and
Athanasopoulos, 2018).
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5.6 Conclusions

We presented a prototypical visual DSS for agrifood that incorporates price
prediction, uncertainty and visual analytics techniques. An elaborate evaluation
with 10 participants active in agrifood or finance revealed many insights
concerning usability, usefulness and needs, model understanding, and trust.
For example, participants were generally very positive about our prototype’s
usability and discussed needs regarding control, comparison, and explanations.
Our results also show that usefulness and trust are related, either directly,
or indirectly through model understanding. Moreover, we observed that
participants’ job activities and experience with predictive modelling influenced
their perceptions and needs. Combining all these findings illustrates that
user-centred approaches are vital for increasing the uptake of visual DSSs in
agrifood.
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I started this project in January 2020, at the start of a period of frequent
self-doubt and gloom. I guess stress, my yearly winter blues, and the social
restrictions during the COVID lockdowns weighed heavier than expected. In
addition, it didn’t help that I couldn’t turn my head around how to meaningfully
assess people’s model understanding, trust, and perceptions of uncertainty
visualisation during an interview. One of the things that really helped me in
this difficult period were long walks in the Egenhoven Forest, Jesuit Park, and
Heverlee Forest. I also started photographing more, especially small things
such as the blue beetle in the picture. Unless I was listening to Numberphile
podcasts to absorb other researchers’ life lessons, the comforting nature helped
me think about a decent research plan. Fun fact: I had many breakthroughs in
a deserted research site, but I’m still unsure whether I was allowed to be there.

Songs on repeat:

• Indecision and the rest of the Nothing’s Real album by Shura
• Comeback Kid by Sharon Van Etten
• Broken Sleep and the rest of the Myopia album by Agnes Obel
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Blue beetle in Egenhoven Forest – April 2020



Once I finished my research plan and prototype, I finally kicked off the interviews
in July 2020. It was wonderful to talk via Skype with people located all around
the world and their feedback gave me the perfect research materials. My virtual
travels to Tunisia, Greece, Italy, Hong Kong, and Australia also ignited a desire
to explore new parts of the world in person once the COVID situation allowed
it (Belgium was in a kind of soft lockdown during the summer of 2020). This
picture reminds me of the Droste effect you sometimes encounter when screen
sharing during a video call.

Songs on repeat:

• Goya! Soda! by Christine and the Queens
• Cookie Jar by Doja Cat
• Back of a Cab and the rest of the Make My Bed album by King Princess
• Pretty Girl by Clairo
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Bicycle parking next to the imec tower – May 2020



This gift from my sister symbolises an adventurous writing journey in August
2021. Back in October 2020, I attended the online TREX workshop on TRust
and EXpertise in Visual Analytics. The work presented there gave me an extra
boost because it aligned perfectly with the topics I covered in my interviews. In
the following months, I transcribed, annotated, and coded my interviews. Yet,
analysing them over and over again, I was struggling to mould participants’
conflicting perceptions into a consistent story. In the meantime, a new edition
of TREX was announced and the submission deadline happened to be the
day before I planned my summer leave. A perfect target. However, being
a talented procrastinator and doubting the value of my thematic analyses, I
still hadn’t started writing a paper the day before. Then, I decided to write
a paper in 24 hours. The story had been in my head for months and once in
the writing zone, I couldn’t stop. Overnight, I realised I had to get my COVID
vaccine in the morning in my parents’ home town. And so it happened I was
frantically writing the paper’s discussion on the train there, finishing it while
getting vaccinated. Yes, people asked questions. Even after rushing to my
parents’ house, I immediately locked myself in my room to do the finishing
touches and submit the paper. Only when I allowed my family to come in, I
realised I submitted too late due to time zone differences. Fortunately, the
ever-sweet workshop organiser Mahsan Nourani saved the day and my paper: it
got accepted (Ooge and Verbert, 2021).
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Wooden T-Rex – August 2021



By April 2022, I had finished the thematic analysis of the interviews and a first
version of the paper. Right on time for my first adventure abroad since the start
of the COVID pandemic: the CHI 2022 conference in New Orleans (United
States). Even though I attended the conference without a paper (that is, as
a tourist), it was an incredible experience. After almost three years, I could
finally connect in person with the human-computer interaction community, and
I enjoyed networking and exchanging research ideas wholeheartedly. After the
conference, my partner Yens came over and we had an amazing time exploring
New Orleans. One day, we organised a second hand book store tour and
discovered Arcadian Books & Prints, where thousands of books were crammed
in a space the size of a large bedroom. The book maze reminded me of my
thematic analysis: interesting stuff everywhere, yet it took time and effort to
spot the patterns hidden in the chaos. Shortly after New Orleans, charged
with new energy, I finished and submitted the paper. End of June 2022, Yens
attended a conference in Belgrade (Serbia) and it was my turn to visit him.
Coincidentally, I received the reviews during breakfast in the heart of the city.
And thus, this project filled with journeys fittingly ended during one.

Songs on repeat:

• Woman Is a Word by Empress Of
• I Don’t Even Smoke Weed and the rest of the Us album by Empress Of
• Love Is A Drug and the rest of the I’m Your Empress Of album by

Empress Of
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Chapter 6 presents a study on how visualisation-supported
justification for recommended learning exercises affects

teenagers’ trust in an e-learning platform. This chapter was
published as a conference paper (Ooge et al., 2022a):

Ooge, J.*, Kato, S.*, and Verbert, K. (2022). Explaining
Recommendations in E-Learning: Effects on Adolescents’
Trust. In 27th International Conference on Intelligent User
Interfaces, IUI ’22, pages 93–105, New York, NY, USA.
Association for Computing Machinery

This work is the outcome of the master’s thesis by Shotallo
Kato, which I guided intensively. As joint first authors, we
contributed equally to defining the research plan, iterating
over the visual explanation designs, and interpreting the

results. Shotallo conducted all user studies, did the
implementation, and did most of the data analysis, whereas I
did most of the writing. Moreover, I presented the paper at

the IUI 2022 conference. The methods, results, and text were
discussed with Katrien Verbert.

Relevant to this part of the thesis is my contribution to the
following conference paper (Bhattacharya et al., 2023), briefly

described on Page 159:
Bhattacharya, A., Ooge, J., Stiglic, G., and Verbert, K.
(2023b). Directive Explanations for Monitoring the Risk
of Diabetes Onset: Introducing Directive Data- Centric
Explanations and Combinations to Support What- If
Explorations. In Proceedings of the 28th International
Conference on Intelligent User Interfaces, IUI ’23, pages
204–219, New York, NY, USA. Association for Computing
Machinery

As the second author, I conducted a focus group, helped
iterate over the visual explanation dashboard and the research
plan, and provided feedback on earlier versions of the paper.
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Chapter 6

Explaining Recommendations
in E-Learning

In the scope of explainable artificial intelligence, explanation techniques are
heavily studied to increase trust in recommender systems. However, studies on
explaining recommendations typically target adults in e-commerce or media
contexts; e-learning has received less research attention. To address these limits,
we investigated how explanations affect adolescents’ initial trust in an e-learning
platform that recommends mathematics exercises with collaborative filtering.
In a randomized controlled experiment with 37 adolescents, we compared real
explanations with placebo and no explanations. Our results show that real
explanations significantly increased initial trust when trust was measured as a
multidimensional construct of competence, benevolence, integrity, intention to
return, and perceived transparency. Yet, this result did not hold when trust was
measured one-dimensionally. Furthermore, not all adolescents attached equal
importance to explanations and trust scores were high overall. These findings
underline the need to tailor explanations and suggest that dynamically learned
factors may be more important than explanations for building initial trust. To
conclude, we thus reflect upon the need for explanations and recommendations
in e-learning in low-stakes and high-stakes situations.

6.1 Introduction

People are increasingly relying on recommender systems that suggest relevant
items, for example movies and music, tailored to their needs and interests.
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However, people are often left in the dark when it comes to why something has
been recommended. In the scope of explainable artificial intelligence (XAI),
many researchers agree that accompanying recommendations with explanations
is often desirable because it can, for example, increase appropriate trust in
the recommender (Adadi and Berrada, 2018; Mohseni et al., 2021; Tintarev
and Masthoff, 2011), which in turn can increase people’s willingness to adopt
technologies and their outcomes (Wang and Benbasat, 2005). Therefore, XAI
and trust have become prominent research topics in human-computer interaction.

However, the degree to which results of previous research on explaining
recommender systems can be generalized is limited because of three reasons.
First, studies are mostly framed in application contexts like media recommending,
e.g., (Berkovsky et al., 2017; Gedikli et al., 2014; Millecamp et al., 2019; Tintarev
and Masthoff, 2012), and e-commerce recommending, e.g., (Panniello et al.,
2016; Pu and Chen, 2006; Wang and Benbasat, 2005). Other contexts such
as education are explored less (Barria-Pineda, 2020). Second, most study
participants are university students or adults, resulting in scarce results for
adolescents (ages 11–19 (Fitton et al., 2013)). Third, on a methodological
level, most XAI research measures the effect of explanations by comparing
recommender systems with and without explanations. However, this comparison
could be unfair as recent studies suggest that the mere presence of placebo
explanations (i.e., explanations without any meaningful content) can already
increase someone’s trust in an intelligent system (Eiband et al., 2019).

To address these limitations, we investigated how explanations affect adolescents’
trust in an e-learning platform that recommends mathematics exercises, and
added placebo explanations as an extra baseline. In particular, we had two
research questions:

RQ1. Can explanations increase adolescents’ initial trust in an e-learning
platform that recommends exercises?

RQ2. How do placebo explanations influence adolescents’ initial trust in such
an e-learning platform?

Our research contribution is threefold. First, we show that explaining
recommendations can significantly increase initial trust in an e-learning platform
if trust is measured multidimensionally. However, when measuring trust one-
dimensionally, the increase is not significant, which suggests that mainly
dynamically learned factors grow initial trust. Second, by comparing our
explanation interface with a placebo baseline, we reveal that adolescents have
different needs for transparency, so tailoring explanations is essential. Third, we
present unique data on how adolescents trust and interact with our e-learning
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platform, which we share publicly in the spirit of open science1. In sum, we
hope our work inspires other researchers to more often target adolescents and
study the impact of tailored explanations in e-learning.

6.2 Background and Related Work

This section discusses some challenges of explaining artificial intelligence, and
particularly recommender systems. Then, it zooms in on trust in automated
systems and previous studies on the trust effects of explaining recommendations.

6.2.1 Explainable Artificial Intelligence

Ever since the resurgence of artificial intelligence, there has been a call for
algorithmic transparency. Sophisticated algorithms are namely often ‘black-
boxes’: it is unclear how they precisely process vast amounts of input data to
obtain an output. Not explaining algorithms’ outcomes may suffice for low-
stakes applications such as movie recommendation but becomes unacceptable
in high-stakes contexts such as healthcare and e-learning. Explainable artificial
intelligence (XAI) is an umbrella term for techniques that try to explain the logic
behind algorithmic decision-making, such that people can understand it, grow
appropriate trust in the algorithm, and detect potential biases (Gunning and
Aha, 2019). A substantial challenge is that XAI encompasses many intertwined
topics including trust, fairness, bias, causality, accountability, privacy, and
human reasoning (Abdul et al., 2018). As a consequence, it is hard to find all-
embracing definitions for XAI and concepts like ‘explainability’, ‘interpretability’,
‘understandability’ and ‘intelligibility’ (Doshi-Velez and Kim, 2017; Gilpin et al.,
2018; Lipton, 2018).

Because of its broadness, the XAI problem can be approached from different
angles. Researchers in artificial intelligence follow an algorithmic approach: they
develop model-specific and model-agnostic techniques to investigate the local
and global behavior of machine learning models and their robustness against
data perturbations (Adadi and Berrada, 2018; Barredo Arrieta et al., 2020;
Guidotti et al., 2019b). In contrast, researchers in human-computer interaction
follow a human-centered approach: they often draw on the social sciences
(Ehsan and Riedl, 2020; Miller, 2019) and let human reasoning processes inform
XAI techniques (Wang et al., 2019a). In short, this led to the understanding
that there is no such thing as a one-size-fits-all explanation. Instead, design
requirements for explanations depend on the application context (Dhanorkar

1https://github.com/JeroenOoge/explaining-recommendations-elearning

https://github.com/JeroenOoge/explaining-recommendations-elearning
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et al., 2021; Vellido, 2020) and the target audience’s goals and personal
characteristics (Berkovsky et al., 2017; Millecamp et al., 2019; Mohseni et al.,
2021); and explanations can be evaluated according to several metrics (Hoffman
et al., 2019; Mohseni et al., 2021).

6.2.2 Explaining Recommendations

A lot of XAI research builds upon earlier research with recommender systems
(Tintarev and Masthoff, 2007a). For example, Herlocker et al. (2000) compared
several explanation designs for collaborative filtering recommenders to increase
acceptance of recommendations. Today, explaining recommender systems is
still a hot research topic, e.g., (Donkers et al., 2020; Jin et al., 2018; Kouki
et al., 2019; Tsai and Brusilovsky, 2019b), generating lively reciprocity with the
wider XAI domain.

In general, explanations for recommendations come in three representational
forms (Nunes et al., 2017). First, textual explanations use natural-language
phrases. Many commercial applications already employ these kinds of
explanations, following patterns like “People who liked X also liked Y ” for
collaborative filtering recommenders, and “You will like X because it has Y
and Z” for content-based recommenders. Second, visual explanations use
(interactive) visualizations to efficiently convey a lot of information. For example,
Herlocker et al. (2000) used histograms to show how neighboring users rated
a recommended movie; Tsai and Brusilovsky (Tsai and Brusilovsky, 2019a)
explained similarity-based recommenders amongst others with radar charts and
Venn diagrams; and Bostandjiev et al. (2012) visualized a music recommending
process with an interactive pathway chart. Third, hybrid explanations leverage
both textual and visual information. For example, Gedikli et al. (2014) used
tag clouds in which word size encodes relevance, and Szymanski et al. (2021)
combined a partial dependence plot with text on how to interpret the visual
information.

Designing explanations for recommendations brings challenges concerning what
and how to explain (Eiband et al., 2018). Usually, the recommendation algorithm
constrains the explanation type (Tintarev and Masthoff, 2011). For example,
collaborative filtering recommendations cannot be explained by their inherent
features. Furthermore, designing explanations involves making several trade-
offs (Kulesza et al., 2013). Tintarev and Masthoff (Tintarev and Masthoff, 2007b,
2011) discussed this in detail and outlined seven goals for explanations which
are not all simultaneously satisfiable: transparency, scrutability, effectiveness,
persuasiveness, efficiency, satisfaction, and trust.
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6.2.3 Trust in Automated Systems

Trusting automated systems has been found essential for adopting them (Pu
and Chen, 2006; Wang and Benbasat, 2005). At the same time, trust research is
somewhat controversial (Davis et al., 2020) because optimizing systems’ designs
to grow trust might lead to inappropriate trust, which can entail undesirable
effects like misusing technology (Bussone et al., 2015; Merritt et al., 2013). In
addition, trust is a complex topic. On the one hand, it has been defined in
many different ways, depending on the field or context (Madsen and Gregor,
2000) and entailing different themes such as competence, benevolence, and
reliance (Chopra and Wallace, 2003; Cramer et al., 2008; Grandison and Sloman,
2000; Lee and See, 2004; Muir, 1987; Wang and Benbasat, 2005). On the other
hand, it has been recognized that trust is not static but evolves (Holliday et al.,
2016; Nourani et al., 2020; Ooge and Verbert, 2021). Thus, measuring trust in
automated systems is challenging and researchers have proposed explicit and
implicit measuring techniques.

Explicit measuring techniques ask people about their trust perceptions in
questionnaires or interviews. One-dimensional approaches measure trust with a
single Likert-type question (Holliday et al., 2016; Millecamp et al., 2019; Nourani
et al., 2020). Although this method is quick and easy, it is susceptible to people
interpreting ‘trust’ differently. Therefore, multidimensional approaches use
Likert scales to measure trust as an ensemble of multiple constructs. For
example, McKnight et al. (2002) introduced the concept of trusting beliefs
(Vidotto et al., 2012), consisting of the constructs competence, benevolence,
and integrity. Later research added more constructs, including perceived
transparency and intention to return (Berkovsky et al., 2017; Pu and Chen,
2007). Overall, while a multidimensional approach is more nuanced than its
one-dimensional counterpart, it requires longer questionnaires and is therefore
more time-consuming.

Implicit measuring techniques avoid the self-reporting bias in explicit meas-
urements by measuring trust through an intermediary. Examples are: loyalty
measured by the number of logins after sign-up (McNee et al., 2003; Tintarev
and Masthoff, 2011), acceptance rate for recommendations (Cramer et al., 2008),
time spent on a page, click-through rate, and page-exiting manner (Fox et al.,
2005). In the context of explaining recommender systems, implicit measurements
for trust have not yet been widely adopted, possibly because intermediaries like
loyalty require long(er)-term studies.
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6.2.4 Trust in Explained Recommendations

Previous research has shown that providing explanations for recommendations
can increase the acceptance of recommendations (Cramer et al., 2008; Herlocker
et al., 2000), and increase people’s trust in the recommender system (Berkovsky
et al., 2017; Pu and Chen, 2006). While previous studies typically focused on
recommenders for movies or e-commerce, e.g., (Kunkel et al., 2019), research in
an e-learning context is limited (Barredo Arrieta et al., 2020; Daher et al., 2017).
This is unfortunate as Abdi et al. (2020) recently demonstrated the potential of
a transparent educational recommender system: an Open Learner Model (Bull
and Kay, 2010) improved understanding of and trust in recommendations for
learning materials.

As trust is a relative measure, it must be compared to some baseline. Studies
on the effects of explanations typically include a baseline with no explanations.
However, a lesser applied baseline are placebo explanations. These ‘pseudo
explanations’ are semantically insensible (Langer et al., 1978), i.e., they do not
reveal any information about why something was recommended, for example
“This has been recommended to you because this is what the algorithm calculated.”
Surprisingly, Eiband et al. (2019) found that placebo explanations can invoke
similar trust levels as real explanations. However, Nourani et al. (2019)
found conflicting results outside the domain of recommender systems: placebo
explanations lowered the perceived accuracy of an image recognition system.

6.2.5 Underexplored Research Areas

Our literature overview shows that XAI re-nourishes the interest in explaining
recommender systems and how that affects trust in recommendations. However,
we see two underexplored areas. First, research on trust and explaining
recommender systems primarily focuses on university students or adults and
often neglects adolescents. Second, while e-learning platforms increasingly
adopt recommendation algorithms (Abdi et al., 2020; Dahl and Fykse, 2018;
Klinkenberg et al., 2011; Manouselis et al., 2014; Verbert et al., 2012), they
lack explanations for their recommendations. Our research addresses both
shortcomings: we design hybrid explanations for an exercise recommender on
an e-learning platform and investigate their effects on adolescents’ initial trust
(i.e., trust based on their first impressions of the platform).
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6.3 Materials and Methods

This section presents our e-learning platform with explanations for recommended
exercises and our overall study design. Our research was approved by the ethical
committee of KU Leuven (reference number G-2021-3233-R2(MAR)).

6.3.1 E-learning Platform with an Exercise Recommender

For our study, we built upon an existing e-learning platform called Wiski (Ooge,
2019), which was developed in Drupal 7 and contains over 1000 multiple choice
exercises on mathematics topics in the Belgian high school curriculum. To
estimate the difficulty level of exercises for each student, we set up an Elo rating
system (Elo, 1978) for students and exercises: if a student correctly solves an
exercise, their Elo score rises and the exercise’s Elo score drops, and vice versa.

We used the Elo rating in two ways. First, students could see the estimated
difficulties while browsing exercises (see Figure 6.1d) to manually pick exercises
suited for their level of mastery. Second, inspired by Dahl and Fykse (Dahl
and Fykse, 2018), we recommended exercises with an algorithm implemented
in Python 3.8.5. When students solved an exercise on a certain topic, they
received three suggestions for follow-up exercises on the same topic. Broadly,
our recommender system combines Elo ratings and collaborative filtering: it
looks for candidate exercises based on a student’s Elo rating and recommends
those that the student is most likely to answer correctly. More specifically, to
recommend exercises about topic T for student A, our algorithm follows three
steps. First, the 7 exercises about topic T with an Elo score closest to the value
EloA + 50 are selected as candidates. We added the constant 50 to promote
recommendations that slightly exceed students’ level of mastery (Wauters et al.,
2012). Then, for each candidate exercise E, the algorithm estimates with nearest-
neighbors how many attempts A may need to solve E: it looks for students
who solved E, selects at most 40 of them close to A in terms of attempts for
previously solved exercises (Pearson similarity), and takes a weighted average
of their number of attempts for E. Finally, the three candidate exercises with
the lowest average number of attempts are recommended in ascending order.

6.3.2 Explanations for Recommendations

To accompany the recommended exercises, we designed three explanation
interfaces, following a user-centered design process. Specifically, we iteratively
refined an initial design during three rounds of think-aloud studies with 16



134 EXPLAINING RECOMMENDATIONS IN E-LEARNING

participants (1 teacher, 5 middle school students, 9 high school students, 1
university student). In these think-alouds, participants executed predefined
tasks that tested the usability of our interfaces and answered additional questions
related to usability, transparency, and explanations in general. We wrote down
all relevant remarks and afterwards grouped them thematically to identify the
most frequent issues. Based on the collected feedback, we dropped initial designs
for transparency pages that explained collaborative filtering, and made the
role of certain components in our explanation interfaces more explicit such
that students could process them quicker. More details can be found in Kato’s
Master’s thesis (Kato, 2021).

Figure 6.1 presents our three final explanation interfaces. The first interface
(Figure 6.1a) contains a real explanation, consisting of three parts [English
translation in brackets]:

Explaining Recommendations in E-Learning: Effects on Adolescents’ Trust IUI ’22, March 22–25, 2022, Helsinki, Finland

[14, 33], and increase people’s trust in the recommender system
[8, 61]. While previous studies typically focused on recommenders
for movies or e-commerce [e.g., 42], research in an e-learning con-
text is limited [5, 15]. This is unfortunate as Abdi et al. [2] recently
demonstrated the potential of a transparent educational recom-
mender system: an Open Learner Model [10] improved understand-
ing of and trust in recommendations for learning materials.

As trust is a relative measure, it must be compared to some
baseline. Studies on the effects of explanations typically include a
baseline with no explanations. However, a lesser applied baseline
are placebo explanations. These ‘pseudo explanations’ are semanti-
cally insensible [43], i.e., they do not reveal any information about
why something was recommended, for example “This has been
recommended to you because this is what the algorithm calculated.”
Surprisingly, Eiband et al. [22] found that placebo explanations can
invoke similar trust levels as real explanations. However, Nourani
et al. [55] found conflicting results outside the domain of recom-
mender systems: placebo explanations lowered the perceived accu-
racy of an image recognition system.

2.5 Underexplored Research Areas
Our literature overview shows that XAI re-nourishes the interest
in explaining recommender systems and how that affects trust in
recommendations. However, we see two underexplored areas. First,
research on trust and explaining recommender systems primarily
focuses on university students or adults and often neglects ado-
lescents. Second, while e-learning platforms increasingly adopt
recommendation algorithms [2, 16, 39, 47, 72], they lack expla-
nations for their recommendations. Our research addresses both
shortcomings: we design hybrid explanations for an exercise recom-
mender on an e-learning platform and investigate their effects on
adolescents’ initial trust (i.e., trust based on their first impressions
of the platform).

3 MATERIALS AND METHODS
This section presents our e-learning platform with explanations for
recommended exercises and our overall study design. Our research
was approved by the ethical committee of KU Leuven (reference
number G-2021-3233-R2(MAR)).

3.1 E-learning Platform with an Exercise
Recommender

For our study, we built upon an existing e-learning platform called
Wiski [58], which was developed in Drupal 7 and contains over
1000 multiple choice exercises about mathematics topics in the
Belgian high school curriculum. To estimate the difficulty level of
exercises for each student, we set up an Elo rating system [24] for
students and exercises: if a student correctly solves an exercise,
their Elo score rises and the exercise’s Elo score drops, and vice
versa.

We used the Elo rating in two ways. First, students could see the
estimated difficulties while browsing exercises (see Figure 1d) to
manually pick exercises suited for their level of mastery. Second,
inspired by Dahl and Fykse [16], we automated exercise selection
with a recommendation algorithm implemented in Python 3.8.5.
When students solved an exercise about a certain topic, they were

presented three suggestions for follow-up exercises on the same
topic. Broadly, our recommender system combines Elo ratings and
collaborative filtering: it looks for candidate exercises based on
a student’s Elo rating and recommends those that the student is
most likely to answer correctly. More specifically, to recommend
exercises about topic T for student A, our algorithm follows three
steps. First, the 7 exercises about topic T with an Elo score closest to
the value EloA+50 are selected as candidates.We added the constant
50 to promote recommendations that slightly exceed students’ level
of mastery [76]. Then, for each candidate exercise E, the algorithm
estimates with nearest-neighbors how many attempts A may need
to solve E: it looks for students who solved E, selects at most 40 of
them close to A in terms of attempts for previously solved exercises
(Pearson similarity), and takes a weighted average of their number
of attempts for E. Finally, the three candidate exercises with the
lowest average number of attempts are recommended in ascending
order.

3.2 Explanations for Recommendations
To accompany the recommended exercises, we designed three expla-
nation interfaces, following a user-centered design process. Specifi-
cally, we iteratively refined an initial design during three rounds of
think-aloud studies with 16 participants (1 teacher, 5 middle school
students, 9 high school students, 1 university student). In these
think-alouds, participants executed predefined tasks that tested
the usability of our interfaces and answered additional questions
related to usability, transparency, and explanations in general. We
wrote down all relevant remarks and afterwards grouped them
thematically to identify the most frequent issues. Based on the col-
lected feedback, we dropped initial designs for transparency pages
that explained collaborative filtering, and made the role of certain
components in our explanation interfaces more explicit such that
students could process them quicker. More details can be found in
[38].

Figure 1 presents our three final explanation interfaces. The first
interface (Figure 1a) contains a real explanation, consisting of three
parts [English translation in brackets]: 1 a why-statement which
indicates that the exercise was recommended based on both the
student’s level of mastery and the exercise’s difficulty [Why this ex-
ercise? Wiski thinks your current level matches that of this exercise!];
2 a justification-statement with the student’s estimated number
of tries needed to solve the exercise [Wiski expects that you will need
1 or 2 attempts to answer exercise X correctly, based on your results
and that of your peers]; 3 a histogram of how many tries similar
students required for the exercise, inspired by Herlocker et al. [33]
[Number of attempts peers needed to solve exercise X correctly]. To
avoid students seeing (nearly) empty histograms because of the
experiment’s cold start, we pre-populated the data set with mock
data based on logging data from a past experiment on Wiski [58].
The second interface (Figure 1b) contains the placebo explanation
“Exercise X is recommended because this is what Wiski’s algorithm
calculated”, which indeed conveys no information about how our
recommendation algorithm works. Finally, the third interface (Fig-
ure 1c) simply states that the exercise was recommended, without
further clarification.

a why-statement which indicates that the exercise
was recommended based on both the student’s level of mastery and the exercise’s
difficulty [Why this exercise? Wiski thinks your current level matches that of
this exercise! ];
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[14, 33], and increase people’s trust in the recommender system
[8, 61]. While previous studies typically focused on recommenders
for movies or e-commerce [e.g., 42], research in an e-learning con-
text is limited [5, 15]. This is unfortunate as Abdi et al. [2] recently
demonstrated the potential of a transparent educational recom-
mender system: an Open Learner Model [10] improved understand-
ing of and trust in recommendations for learning materials.

As trust is a relative measure, it must be compared to some
baseline. Studies on the effects of explanations typically include a
baseline with no explanations. However, a lesser applied baseline
are placebo explanations. These ‘pseudo explanations’ are semanti-
cally insensible [43], i.e., they do not reveal any information about
why something was recommended, for example “This has been
recommended to you because this is what the algorithm calculated.”
Surprisingly, Eiband et al. [22] found that placebo explanations can
invoke similar trust levels as real explanations. However, Nourani
et al. [55] found conflicting results outside the domain of recom-
mender systems: placebo explanations lowered the perceived accu-
racy of an image recognition system.

2.5 Underexplored Research Areas
Our literature overview shows that XAI re-nourishes the interest
in explaining recommender systems and how that affects trust in
recommendations. However, we see two underexplored areas. First,
research on trust and explaining recommender systems primarily
focuses on university students or adults and often neglects ado-
lescents. Second, while e-learning platforms increasingly adopt
recommendation algorithms [2, 16, 39, 47, 72], they lack expla-
nations for their recommendations. Our research addresses both
shortcomings: we design hybrid explanations for an exercise recom-
mender on an e-learning platform and investigate their effects on
adolescents’ initial trust (i.e., trust based on their first impressions
of the platform).

3 MATERIALS AND METHODS
This section presents our e-learning platform with explanations for
recommended exercises and our overall study design. Our research
was approved by the ethical committee of KU Leuven (reference
number G-2021-3233-R2(MAR)).

3.1 E-learning Platform with an Exercise
Recommender

For our study, we built upon an existing e-learning platform called
Wiski [58], which was developed in Drupal 7 and contains over
1000 multiple choice exercises about mathematics topics in the
Belgian high school curriculum. To estimate the difficulty level of
exercises for each student, we set up an Elo rating system [24] for
students and exercises: if a student correctly solves an exercise,
their Elo score rises and the exercise’s Elo score drops, and vice
versa.

We used the Elo rating in two ways. First, students could see the
estimated difficulties while browsing exercises (see Figure 1d) to
manually pick exercises suited for their level of mastery. Second,
inspired by Dahl and Fykse [16], we automated exercise selection
with a recommendation algorithm implemented in Python 3.8.5.
When students solved an exercise about a certain topic, they were

presented three suggestions for follow-up exercises on the same
topic. Broadly, our recommender system combines Elo ratings and
collaborative filtering: it looks for candidate exercises based on
a student’s Elo rating and recommends those that the student is
most likely to answer correctly. More specifically, to recommend
exercises about topic T for student A, our algorithm follows three
steps. First, the 7 exercises about topic T with an Elo score closest to
the value EloA+50 are selected as candidates.We added the constant
50 to promote recommendations that slightly exceed students’ level
of mastery [76]. Then, for each candidate exercise E, the algorithm
estimates with nearest-neighbors how many attempts A may need
to solve E: it looks for students who solved E, selects at most 40 of
them close to A in terms of attempts for previously solved exercises
(Pearson similarity), and takes a weighted average of their number
of attempts for E. Finally, the three candidate exercises with the
lowest average number of attempts are recommended in ascending
order.

3.2 Explanations for Recommendations
To accompany the recommended exercises, we designed three expla-
nation interfaces, following a user-centered design process. Specifi-
cally, we iteratively refined an initial design during three rounds of
think-aloud studies with 16 participants (1 teacher, 5 middle school
students, 9 high school students, 1 university student). In these
think-alouds, participants executed predefined tasks that tested
the usability of our interfaces and answered additional questions
related to usability, transparency, and explanations in general. We
wrote down all relevant remarks and afterwards grouped them
thematically to identify the most frequent issues. Based on the col-
lected feedback, we dropped initial designs for transparency pages
that explained collaborative filtering, and made the role of certain
components in our explanation interfaces more explicit such that
students could process them quicker. More details can be found in
[38].

Figure 1 presents our three final explanation interfaces. The first
interface (Figure 1a) contains a real explanation, consisting of three
parts [English translation in brackets]: 1 a why-statement which
indicates that the exercise was recommended based on both the
student’s level of mastery and the exercise’s difficulty [Why this ex-
ercise? Wiski thinks your current level matches that of this exercise!];
2 a justification-statement with the student’s estimated number
of tries needed to solve the exercise [Wiski expects that you will need
1 or 2 attempts to answer exercise X correctly, based on your results
and that of your peers]; 3 a histogram of how many tries similar
students required for the exercise, inspired by Herlocker et al. [33]
[Number of attempts peers needed to solve exercise X correctly]. To
avoid students seeing (nearly) empty histograms because of the
experiment’s cold start, we pre-populated the data set with mock
data based on logging data from a past experiment on Wiski [58].
The second interface (Figure 1b) contains the placebo explanation
“Exercise X is recommended because this is what Wiski’s algorithm
calculated”, which indeed conveys no information about how our
recommendation algorithm works. Finally, the third interface (Fig-
ure 1c) simply states that the exercise was recommended, without
further clarification.

a justification-statement with the student’s estimated number
of tries needed to solve the exercise [Wiski expects that you will need 1 or
2 attempts to answer exercise X correctly, based on your results and that of
your peers];
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[14, 33], and increase people’s trust in the recommender system
[8, 61]. While previous studies typically focused on recommenders
for movies or e-commerce [e.g., 42], research in an e-learning con-
text is limited [5, 15]. This is unfortunate as Abdi et al. [2] recently
demonstrated the potential of a transparent educational recom-
mender system: an Open Learner Model [10] improved understand-
ing of and trust in recommendations for learning materials.

As trust is a relative measure, it must be compared to some
baseline. Studies on the effects of explanations typically include a
baseline with no explanations. However, a lesser applied baseline
are placebo explanations. These ‘pseudo explanations’ are semanti-
cally insensible [43], i.e., they do not reveal any information about
why something was recommended, for example “This has been
recommended to you because this is what the algorithm calculated.”
Surprisingly, Eiband et al. [22] found that placebo explanations can
invoke similar trust levels as real explanations. However, Nourani
et al. [55] found conflicting results outside the domain of recom-
mender systems: placebo explanations lowered the perceived accu-
racy of an image recognition system.

2.5 Underexplored Research Areas
Our literature overview shows that XAI re-nourishes the interest
in explaining recommender systems and how that affects trust in
recommendations. However, we see two underexplored areas. First,
research on trust and explaining recommender systems primarily
focuses on university students or adults and often neglects ado-
lescents. Second, while e-learning platforms increasingly adopt
recommendation algorithms [2, 16, 39, 47, 72], they lack expla-
nations for their recommendations. Our research addresses both
shortcomings: we design hybrid explanations for an exercise recom-
mender on an e-learning platform and investigate their effects on
adolescents’ initial trust (i.e., trust based on their first impressions
of the platform).

3 MATERIALS AND METHODS
This section presents our e-learning platform with explanations for
recommended exercises and our overall study design. Our research
was approved by the ethical committee of KU Leuven (reference
number G-2021-3233-R2(MAR)).

3.1 E-learning Platform with an Exercise
Recommender

For our study, we built upon an existing e-learning platform called
Wiski [58], which was developed in Drupal 7 and contains over
1000 multiple choice exercises about mathematics topics in the
Belgian high school curriculum. To estimate the difficulty level of
exercises for each student, we set up an Elo rating system [24] for
students and exercises: if a student correctly solves an exercise,
their Elo score rises and the exercise’s Elo score drops, and vice
versa.

We used the Elo rating in two ways. First, students could see the
estimated difficulties while browsing exercises (see Figure 1d) to
manually pick exercises suited for their level of mastery. Second,
inspired by Dahl and Fykse [16], we automated exercise selection
with a recommendation algorithm implemented in Python 3.8.5.
When students solved an exercise about a certain topic, they were

presented three suggestions for follow-up exercises on the same
topic. Broadly, our recommender system combines Elo ratings and
collaborative filtering: it looks for candidate exercises based on
a student’s Elo rating and recommends those that the student is
most likely to answer correctly. More specifically, to recommend
exercises about topic T for student A, our algorithm follows three
steps. First, the 7 exercises about topic T with an Elo score closest to
the value EloA+50 are selected as candidates.We added the constant
50 to promote recommendations that slightly exceed students’ level
of mastery [76]. Then, for each candidate exercise E, the algorithm
estimates with nearest-neighbors how many attempts A may need
to solve E: it looks for students who solved E, selects at most 40 of
them close to A in terms of attempts for previously solved exercises
(Pearson similarity), and takes a weighted average of their number
of attempts for E. Finally, the three candidate exercises with the
lowest average number of attempts are recommended in ascending
order.

3.2 Explanations for Recommendations
To accompany the recommended exercises, we designed three expla-
nation interfaces, following a user-centered design process. Specifi-
cally, we iteratively refined an initial design during three rounds of
think-aloud studies with 16 participants (1 teacher, 5 middle school
students, 9 high school students, 1 university student). In these
think-alouds, participants executed predefined tasks that tested
the usability of our interfaces and answered additional questions
related to usability, transparency, and explanations in general. We
wrote down all relevant remarks and afterwards grouped them
thematically to identify the most frequent issues. Based on the col-
lected feedback, we dropped initial designs for transparency pages
that explained collaborative filtering, and made the role of certain
components in our explanation interfaces more explicit such that
students could process them quicker. More details can be found in
[38].

Figure 1 presents our three final explanation interfaces. The first
interface (Figure 1a) contains a real explanation, consisting of three
parts [English translation in brackets]: 1 a why-statement which
indicates that the exercise was recommended based on both the
student’s level of mastery and the exercise’s difficulty [Why this ex-
ercise? Wiski thinks your current level matches that of this exercise!];
2 a justification-statement with the student’s estimated number
of tries needed to solve the exercise [Wiski expects that you will need
1 or 2 attempts to answer exercise X correctly, based on your results
and that of your peers]; 3 a histogram of how many tries similar
students required for the exercise, inspired by Herlocker et al. [33]
[Number of attempts peers needed to solve exercise X correctly]. To
avoid students seeing (nearly) empty histograms because of the
experiment’s cold start, we pre-populated the data set with mock
data based on logging data from a past experiment on Wiski [58].
The second interface (Figure 1b) contains the placebo explanation
“Exercise X is recommended because this is what Wiski’s algorithm
calculated”, which indeed conveys no information about how our
recommendation algorithm works. Finally, the third interface (Fig-
ure 1c) simply states that the exercise was recommended, without
further clarification.

a histogram of how many tries similar students required for
the exercise, inspired by Herlocker et al. (2000) [Number of attempts peers
needed to solve exercise X correctly]. To avoid students seeing (nearly) empty
histograms at the experiment’s cold start, we pre-populated the data set with
mock data based on logging data from a past experiment on Wiski that used
identical exercises (Ooge, 2019). The second interface (Figure 6.1b) contains the
placebo explanation “Exercise X is recommended because this is what Wiski’s
algorithm calculated”, which indeed conveys no information about how our
recommendation algorithm works. Finally, the third interface (Figure 6.1c)
simply states that the exercise was recommended, without further clarification.

6.3.3 Participant Recruitment

We contacted teachers of 18 high schools in Belgium (Flanders) and invited
them and their students to participate in our research. Teachers and students
received an information leaflet that described the research process, stressing that
students could not be coerced into participating and would receive an equivalent
substitute task if they did not wish to participate. Interested students then gave
informed consent and students under the age of 16 also required signatures from
their parents. In addition, we recruited extra participants through snowball
sampling.
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(a) A real explanation for the REAL
group with
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[14, 33], and increase people’s trust in the recommender system
[8, 61]. While previous studies typically focused on recommenders
for movies or e-commerce [e.g., 42], research in an e-learning con-
text is limited [5, 15]. This is unfortunate as Abdi et al. [2] recently
demonstrated the potential of a transparent educational recom-
mender system: an Open Learner Model [10] improved understand-
ing of and trust in recommendations for learning materials.

As trust is a relative measure, it must be compared to some
baseline. Studies on the effects of explanations typically include a
baseline with no explanations. However, a lesser applied baseline
are placebo explanations. These ‘pseudo explanations’ are semanti-
cally insensible [43], i.e., they do not reveal any information about
why something was recommended, for example “This has been
recommended to you because this is what the algorithm calculated.”
Surprisingly, Eiband et al. [22] found that placebo explanations can
invoke similar trust levels as real explanations. However, Nourani
et al. [55] found conflicting results outside the domain of recom-
mender systems: placebo explanations lowered the perceived accu-
racy of an image recognition system.

2.5 Underexplored Research Areas
Our literature overview shows that XAI re-nourishes the interest
in explaining recommender systems and how that affects trust in
recommendations. However, we see two underexplored areas. First,
research on trust and explaining recommender systems primarily
focuses on university students or adults and often neglects ado-
lescents. Second, while e-learning platforms increasingly adopt
recommendation algorithms [2, 16, 39, 47, 72], they lack expla-
nations for their recommendations. Our research addresses both
shortcomings: we design hybrid explanations for an exercise recom-
mender on an e-learning platform and investigate their effects on
adolescents’ initial trust (i.e., trust based on their first impressions
of the platform).

3 MATERIALS AND METHODS
This section presents our e-learning platform with explanations for
recommended exercises and our overall study design. Our research
was approved by the ethical committee of KU Leuven (reference
number G-2021-3233-R2(MAR)).

3.1 E-learning Platform with an Exercise
Recommender

For our study, we built upon an existing e-learning platform called
Wiski [58], which was developed in Drupal 7 and contains over
1000 multiple choice exercises about mathematics topics in the
Belgian high school curriculum. To estimate the difficulty level of
exercises for each student, we set up an Elo rating system [24] for
students and exercises: if a student correctly solves an exercise,
their Elo score rises and the exercise’s Elo score drops, and vice
versa.

We used the Elo rating in two ways. First, students could see the
estimated difficulties while browsing exercises (see Figure 1d) to
manually pick exercises suited for their level of mastery. Second,
inspired by Dahl and Fykse [16], we automated exercise selection
with a recommendation algorithm implemented in Python 3.8.5.
When students solved an exercise about a certain topic, they were

presented three suggestions for follow-up exercises on the same
topic. Broadly, our recommender system combines Elo ratings and
collaborative filtering: it looks for candidate exercises based on
a student’s Elo rating and recommends those that the student is
most likely to answer correctly. More specifically, to recommend
exercises about topic T for student A, our algorithm follows three
steps. First, the 7 exercises about topic T with an Elo score closest to
the value EloA+50 are selected as candidates.We added the constant
50 to promote recommendations that slightly exceed students’ level
of mastery [76]. Then, for each candidate exercise E, the algorithm
estimates with nearest-neighbors how many attempts A may need
to solve E: it looks for students who solved E, selects at most 40 of
them close to A in terms of attempts for previously solved exercises
(Pearson similarity), and takes a weighted average of their number
of attempts for E. Finally, the three candidate exercises with the
lowest average number of attempts are recommended in ascending
order.

3.2 Explanations for Recommendations
To accompany the recommended exercises, we designed three expla-
nation interfaces, following a user-centered design process. Specifi-
cally, we iteratively refined an initial design during three rounds of
think-aloud studies with 16 participants (1 teacher, 5 middle school
students, 9 high school students, 1 university student). In these
think-alouds, participants executed predefined tasks that tested
the usability of our interfaces and answered additional questions
related to usability, transparency, and explanations in general. We
wrote down all relevant remarks and afterwards grouped them
thematically to identify the most frequent issues. Based on the col-
lected feedback, we dropped initial designs for transparency pages
that explained collaborative filtering, and made the role of certain
components in our explanation interfaces more explicit such that
students could process them quicker. More details can be found in
[38].

Figure 1 presents our three final explanation interfaces. The first
interface (Figure 1a) contains a real explanation, consisting of three
parts [English translation in brackets]: 1 a why-statement which
indicates that the exercise was recommended based on both the
student’s level of mastery and the exercise’s difficulty [Why this ex-
ercise? Wiski thinks your current level matches that of this exercise!];
2 a justification-statement with the student’s estimated number
of tries needed to solve the exercise [Wiski expects that you will need
1 or 2 attempts to answer exercise X correctly, based on your results
and that of your peers]; 3 a histogram of how many tries similar
students required for the exercise, inspired by Herlocker et al. [33]
[Number of attempts peers needed to solve exercise X correctly]. To
avoid students seeing (nearly) empty histograms because of the
experiment’s cold start, we pre-populated the data set with mock
data based on logging data from a past experiment on Wiski [58].
The second interface (Figure 1b) contains the placebo explanation
“Exercise X is recommended because this is what Wiski’s algorithm
calculated”, which indeed conveys no information about how our
recommendation algorithm works. Finally, the third interface (Fig-
ure 1c) simply states that the exercise was recommended, without
further clarification.

a why-statement,
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[14, 33], and increase people’s trust in the recommender system
[8, 61]. While previous studies typically focused on recommenders
for movies or e-commerce [e.g., 42], research in an e-learning con-
text is limited [5, 15]. This is unfortunate as Abdi et al. [2] recently
demonstrated the potential of a transparent educational recom-
mender system: an Open Learner Model [10] improved understand-
ing of and trust in recommendations for learning materials.

As trust is a relative measure, it must be compared to some
baseline. Studies on the effects of explanations typically include a
baseline with no explanations. However, a lesser applied baseline
are placebo explanations. These ‘pseudo explanations’ are semanti-
cally insensible [43], i.e., they do not reveal any information about
why something was recommended, for example “This has been
recommended to you because this is what the algorithm calculated.”
Surprisingly, Eiband et al. [22] found that placebo explanations can
invoke similar trust levels as real explanations. However, Nourani
et al. [55] found conflicting results outside the domain of recom-
mender systems: placebo explanations lowered the perceived accu-
racy of an image recognition system.

2.5 Underexplored Research Areas
Our literature overview shows that XAI re-nourishes the interest
in explaining recommender systems and how that affects trust in
recommendations. However, we see two underexplored areas. First,
research on trust and explaining recommender systems primarily
focuses on university students or adults and often neglects ado-
lescents. Second, while e-learning platforms increasingly adopt
recommendation algorithms [2, 16, 39, 47, 72], they lack expla-
nations for their recommendations. Our research addresses both
shortcomings: we design hybrid explanations for an exercise recom-
mender on an e-learning platform and investigate their effects on
adolescents’ initial trust (i.e., trust based on their first impressions
of the platform).

3 MATERIALS AND METHODS
This section presents our e-learning platform with explanations for
recommended exercises and our overall study design. Our research
was approved by the ethical committee of KU Leuven (reference
number G-2021-3233-R2(MAR)).

3.1 E-learning Platform with an Exercise
Recommender

For our study, we built upon an existing e-learning platform called
Wiski [58], which was developed in Drupal 7 and contains over
1000 multiple choice exercises about mathematics topics in the
Belgian high school curriculum. To estimate the difficulty level of
exercises for each student, we set up an Elo rating system [24] for
students and exercises: if a student correctly solves an exercise,
their Elo score rises and the exercise’s Elo score drops, and vice
versa.

We used the Elo rating in two ways. First, students could see the
estimated difficulties while browsing exercises (see Figure 1d) to
manually pick exercises suited for their level of mastery. Second,
inspired by Dahl and Fykse [16], we automated exercise selection
with a recommendation algorithm implemented in Python 3.8.5.
When students solved an exercise about a certain topic, they were

presented three suggestions for follow-up exercises on the same
topic. Broadly, our recommender system combines Elo ratings and
collaborative filtering: it looks for candidate exercises based on
a student’s Elo rating and recommends those that the student is
most likely to answer correctly. More specifically, to recommend
exercises about topic T for student A, our algorithm follows three
steps. First, the 7 exercises about topic T with an Elo score closest to
the value EloA+50 are selected as candidates.We added the constant
50 to promote recommendations that slightly exceed students’ level
of mastery [76]. Then, for each candidate exercise E, the algorithm
estimates with nearest-neighbors how many attempts A may need
to solve E: it looks for students who solved E, selects at most 40 of
them close to A in terms of attempts for previously solved exercises
(Pearson similarity), and takes a weighted average of their number
of attempts for E. Finally, the three candidate exercises with the
lowest average number of attempts are recommended in ascending
order.

3.2 Explanations for Recommendations
To accompany the recommended exercises, we designed three expla-
nation interfaces, following a user-centered design process. Specifi-
cally, we iteratively refined an initial design during three rounds of
think-aloud studies with 16 participants (1 teacher, 5 middle school
students, 9 high school students, 1 university student). In these
think-alouds, participants executed predefined tasks that tested
the usability of our interfaces and answered additional questions
related to usability, transparency, and explanations in general. We
wrote down all relevant remarks and afterwards grouped them
thematically to identify the most frequent issues. Based on the col-
lected feedback, we dropped initial designs for transparency pages
that explained collaborative filtering, and made the role of certain
components in our explanation interfaces more explicit such that
students could process them quicker. More details can be found in
[38].

Figure 1 presents our three final explanation interfaces. The first
interface (Figure 1a) contains a real explanation, consisting of three
parts [English translation in brackets]: 1 a why-statement which
indicates that the exercise was recommended based on both the
student’s level of mastery and the exercise’s difficulty [Why this ex-
ercise? Wiski thinks your current level matches that of this exercise!];
2 a justification-statement with the student’s estimated number
of tries needed to solve the exercise [Wiski expects that you will need
1 or 2 attempts to answer exercise X correctly, based on your results
and that of your peers]; 3 a histogram of how many tries similar
students required for the exercise, inspired by Herlocker et al. [33]
[Number of attempts peers needed to solve exercise X correctly]. To
avoid students seeing (nearly) empty histograms because of the
experiment’s cold start, we pre-populated the data set with mock
data based on logging data from a past experiment on Wiski [58].
The second interface (Figure 1b) contains the placebo explanation
“Exercise X is recommended because this is what Wiski’s algorithm
calculated”, which indeed conveys no information about how our
recommendation algorithm works. Finally, the third interface (Fig-
ure 1c) simply states that the exercise was recommended, without
further clarification.

justification-statement, and
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[14, 33], and increase people’s trust in the recommender system
[8, 61]. While previous studies typically focused on recommenders
for movies or e-commerce [e.g., 42], research in an e-learning con-
text is limited [5, 15]. This is unfortunate as Abdi et al. [2] recently
demonstrated the potential of a transparent educational recom-
mender system: an Open Learner Model [10] improved understand-
ing of and trust in recommendations for learning materials.

As trust is a relative measure, it must be compared to some
baseline. Studies on the effects of explanations typically include a
baseline with no explanations. However, a lesser applied baseline
are placebo explanations. These ‘pseudo explanations’ are semanti-
cally insensible [43], i.e., they do not reveal any information about
why something was recommended, for example “This has been
recommended to you because this is what the algorithm calculated.”
Surprisingly, Eiband et al. [22] found that placebo explanations can
invoke similar trust levels as real explanations. However, Nourani
et al. [55] found conflicting results outside the domain of recom-
mender systems: placebo explanations lowered the perceived accu-
racy of an image recognition system.

2.5 Underexplored Research Areas
Our literature overview shows that XAI re-nourishes the interest
in explaining recommender systems and how that affects trust in
recommendations. However, we see two underexplored areas. First,
research on trust and explaining recommender systems primarily
focuses on university students or adults and often neglects ado-
lescents. Second, while e-learning platforms increasingly adopt
recommendation algorithms [2, 16, 39, 47, 72], they lack expla-
nations for their recommendations. Our research addresses both
shortcomings: we design hybrid explanations for an exercise recom-
mender on an e-learning platform and investigate their effects on
adolescents’ initial trust (i.e., trust based on their first impressions
of the platform).

3 MATERIALS AND METHODS
This section presents our e-learning platform with explanations for
recommended exercises and our overall study design. Our research
was approved by the ethical committee of KU Leuven (reference
number G-2021-3233-R2(MAR)).

3.1 E-learning Platform with an Exercise
Recommender

For our study, we built upon an existing e-learning platform called
Wiski [58], which was developed in Drupal 7 and contains over
1000 multiple choice exercises about mathematics topics in the
Belgian high school curriculum. To estimate the difficulty level of
exercises for each student, we set up an Elo rating system [24] for
students and exercises: if a student correctly solves an exercise,
their Elo score rises and the exercise’s Elo score drops, and vice
versa.

We used the Elo rating in two ways. First, students could see the
estimated difficulties while browsing exercises (see Figure 1d) to
manually pick exercises suited for their level of mastery. Second,
inspired by Dahl and Fykse [16], we automated exercise selection
with a recommendation algorithm implemented in Python 3.8.5.
When students solved an exercise about a certain topic, they were

presented three suggestions for follow-up exercises on the same
topic. Broadly, our recommender system combines Elo ratings and
collaborative filtering: it looks for candidate exercises based on
a student’s Elo rating and recommends those that the student is
most likely to answer correctly. More specifically, to recommend
exercises about topic T for student A, our algorithm follows three
steps. First, the 7 exercises about topic T with an Elo score closest to
the value EloA+50 are selected as candidates.We added the constant
50 to promote recommendations that slightly exceed students’ level
of mastery [76]. Then, for each candidate exercise E, the algorithm
estimates with nearest-neighbors how many attempts A may need
to solve E: it looks for students who solved E, selects at most 40 of
them close to A in terms of attempts for previously solved exercises
(Pearson similarity), and takes a weighted average of their number
of attempts for E. Finally, the three candidate exercises with the
lowest average number of attempts are recommended in ascending
order.

3.2 Explanations for Recommendations
To accompany the recommended exercises, we designed three expla-
nation interfaces, following a user-centered design process. Specifi-
cally, we iteratively refined an initial design during three rounds of
think-aloud studies with 16 participants (1 teacher, 5 middle school
students, 9 high school students, 1 university student). In these
think-alouds, participants executed predefined tasks that tested
the usability of our interfaces and answered additional questions
related to usability, transparency, and explanations in general. We
wrote down all relevant remarks and afterwards grouped them
thematically to identify the most frequent issues. Based on the col-
lected feedback, we dropped initial designs for transparency pages
that explained collaborative filtering, and made the role of certain
components in our explanation interfaces more explicit such that
students could process them quicker. More details can be found in
[38].

Figure 1 presents our three final explanation interfaces. The first
interface (Figure 1a) contains a real explanation, consisting of three
parts [English translation in brackets]: 1 a why-statement which
indicates that the exercise was recommended based on both the
student’s level of mastery and the exercise’s difficulty [Why this ex-
ercise? Wiski thinks your current level matches that of this exercise!];
2 a justification-statement with the student’s estimated number
of tries needed to solve the exercise [Wiski expects that you will need
1 or 2 attempts to answer exercise X correctly, based on your results
and that of your peers]; 3 a histogram of how many tries similar
students required for the exercise, inspired by Herlocker et al. [33]
[Number of attempts peers needed to solve exercise X correctly]. To
avoid students seeing (nearly) empty histograms because of the
experiment’s cold start, we pre-populated the data set with mock
data based on logging data from a past experiment on Wiski [58].
The second interface (Figure 1b) contains the placebo explanation
“Exercise X is recommended because this is what Wiski’s algorithm
calculated”, which indeed conveys no information about how our
recommendation algorithm works. Finally, the third interface (Fig-
ure 1c) simply states that the exercise was recommended, without
further clarification.

histo-
gram.

(b) A placebo explanation for the
PLACEBO group with a why-statement
that the exercise is recommended by an
algorithm.

(c) No explanation for the NONE group,
only a statement that the exercise is
recommended.

(d) Exercise list: rows contain an
indication of being solved, a link to
the exercise, and a difficulty label (easy,
average, hard).

Figure 6.1: The three explanation interfaces in our randomized controlled
experiment (a–c). In each interface, the top part (blue) shows real, placebo,
or no explanations. The bottom part (green) allows students to return to the
exercise overview (d).
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Sign Up Pre-Study Questionnaire Select Topic

Select ExercisePost-Study Questionnaire Solve ExerciseExplanation Interface

Figure 6.2: Flow chart of our study: sign up, pre-study questionnaire, solving
exercises and interacting with an explanation interface five times, and post-study
questionnaire.

6.3.4 Study Design

To assess the effects of our explanation interfaces on initial trust, we conducted
a randomized controlled experiment (Glennerster and Takavarasha, 2013) with
three research groups: REAL, PLACEBO, and NONE, corresponding to the
explanation interfaces in Figure 6.1a to 6.1c, respectively. Following the
steps in Figure 6.2, all participants (1) registered on our platform and were
randomly assigned a research group; (2) answered a pre-study questionnaire
with questions related to their demographics, experience with computers and
e-learning platforms, mathematical background, and self-perceived mastery
in mathematics; (3) solved five exercises and interacted with their research
group’s explanation interface after each exercise; (4) answered the post-study
questionnaire in Table A.1 with questions on trust; and (5) optionally used the
platform freely until the end of the study. Thus, participants’ experience on our
platform only differed in the explanation interface shown after solving exercises.
In the background, we also logged whether participants selected recommended
exercises.

We decided to let participants answer the post-study questionnaire after five
exercises because (a) they then all interacted with an explanation interface
equally often, and (b) they often participated during a mathematics period at
school and needed to finish in under an hour. The post-study questionnaire itself
contained nineteen 7-point Likert-type questions divided into seven groups (see



RESULTS 137

Table A.1). We measured trusting beliefs, consisting of Competence (Q1–Q5),
Benevolence (Q6–Q8), and Integrity (Q9–Q11) with a validated questionnaire
by Wang and Benbasat (Wang and Benbasat, 2005). To fit the original
questions in the scope of Wiski, we translated them to Dutch and made them
easier to understand for adolescents by simplifying some vocabulary. The
average of the scores for trusting beliefs, Intention to return (Q13–Q14), and
Perceived transparency (Q15) yielded a multidimensional trust score. In contrast,
Trust (Q12) assessed one-dimensional trust by explicitly asking about trust in
Wiski’s recommendations. Finally, General questions (Q16–Q19) collected extra
information about how participants perceived explanations. Furthermore, after
each question group, we added a text field in which participants could motivate
their Likert-type responses. In the end, we thematically analyzed these written
qualitative data to gain further insights into participants’ rationale for picking
a specific quantitative score. Measuring trust through the above-mentioned
constructs aligns with how other recommender systems are evaluated in the
literature (Berkovsky et al., 2017; Chen, 2008; Cramer et al., 2008; Gedikli
et al., 2014; Wang and Benbasat, 2005).

6.3.5 Statistical Analysis

We analyzed our data with Pingouin 0.3.11 (Vallat, 2018) in Python 3.8.5.
We used non-parametric statistics to avoid normality assumptions, similar to
other studies involving Likert-type data, e.g., (Abdi et al., 2020; Cramer et al.,
2008). More specifically, we tested for significant differences between research
groups with Mann-Whitney U and used Kendall’s τ to test for correlations. To
interpret the former as a test for difference in medians, we assumed equal data
distributions in our research groups.

6.4 Results

In total, 37 students (ages 13–18, 13 male, 24 female) participated in our
research: 3 students were from 9th grade, 18 from 10th grade, 8 from 11th
grade, and 8 from 12th grade. Figure 6.7 shows their distribution over the three
research groups: 12 in REAL, 12 in PLACEBO, and 13 in NONE. Figures 6.3
and 6.4 plot their responses to the post-study questionnaire.
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Q1. Wiski is like an expert (for example, a teacher) for recommending math exercises.
Q2. Wiski has the expertise (knowledge) to estimate my math level.
Q3. Wiski can estimate my math level.
Q4. Wiski understands the difficulty level of math exercises well.
Q5. Wiski takes my math level into account when recommending exercises.
Q6. Wiski prioritizes that I improve in math.
Q7. Wiski recommends exercises so that I improve in math.
Q8. Wiski wants to estimate my math level well.
Q9. Wiski recommends exercises as correctly as possible.
Q10. Wiski is honest.
Q11. Wiski makes integrous recommendations.
Q12. I trust Wiski to recommend me math exercises.
Q13. If I want to solve math exercises again, I will choose Wiski.
Q14. If I want to be recommended math exercises again, I will choose Wiski.
Q15. I find that Wiski gives enough explanation as to why an exercise has been recommended.
Q16. I do NOT want any explanations about why an exercise has been recommended [abbr].
Q17. I find explaining recommendations more important for exercises than for movies [abbr].
Q18. I am NOT happy with the level of math exercises Wiski recommended.
Q19. I find it important to receive explanations for recommendations [abbr].

Responses to the Post-Study Questionnaire in REAL

Completely Disagree
Disagree
Somewhat Disagree
Neutral
Somewhat Agree
Agree
Completely Agree
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Q1. Wiski is like an expert (for example, a teacher) for recommending math exercises.
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Figure 6.3: Diverging bar charts of the responses to the post-study
questionnaire in Table A.1 for each research group.

6.4.1 Effects of Real Explanations

Table 6.1a and 6.1b depict the outcomes of one-sided Mann-Whitney U tests,
comparing REAL to NONE, and REAL to PLACEBO. Median competence,
trusting beliefs, perceived transparency, and multidimensional trust were
significantly higher in REAL (p < 0.05). However, there was no significant
increase in integrity, one-dimensional trust or intention to return. For
benevolence, there was only a significant increase (p < 0.05) when comparing
REAL to NONE.



RESULTS 139

REAL PLACEBO NONE
1

2

3

4

5

6

7

Sc
or

e

Competence

REAL PLACEBO NONE
1

2

3

4

5

6

7

Sc
or

e

Benevolence

REAL PLACEBO NONE
1

2

3

4

5

6

7

Sc
or

e

Integrity

REAL PLACEBO NONE
1

2

3

4

5

6

7

Sc
or

e

Trusting Beliefs

REAL PLACEBO NONE
1

2

3

4

5

6

7

Sc
or

e

Intention to Return

REAL PLACEBO NONE
1

2

3

4

5

6

7

Sc
or

e

Perc. Transparency

REAL PLACEBO NONE
1

2

3

4

5

6

7

Sc
or

e

One-Dimens. Trust

REAL PLACEBO NONE
1

2

3

4

5

6

7

Sc
or

e

Multidimens. Trust

REAL PLACEBO NONE Global
1

2

3

4

5

6

7

Sc
or

e

Q16

REAL PLACEBO NONE Global
1

2

3

4

5

6

7

Sc
or

e

Q17

REAL PLACEBO NONE Global
1

2

3

4

5

6

7

Sc
or

e

Q18

REAL PLACEBO NONE Global
1

2

3

4

5

6

7

Sc
or

e

Q19

Figure 6.4: Box plots of the responses to the post-study questionnaire in
Table A.1 for each research group.

The qualitative responses2 on Q15 showed that perceived transparency was
somewhat controversial in REAL. Some participants were positive about the
explanations: “I found the explanation that Wiski gave correct and satisfactory.”
Other participants did not seem to be satisfied with the explanations and may
have wanted a different type of explanation: “Doesn’t it just state how many
tries Wiski thinks I would need to find the correct answer. It doesn’t explain
specifically.” Finally, there was also evidence that some participants did not
require explanations: “I didn’t really read the explanation. . . ”

6.4.2 Effects of Placebo Explanations

Two-sided Mann-Whitney U tests did not reveal any significant difference
(p < 0.05) between PLACEBO and NONE: the smallest p-values were 0.099

2We translated the original Dutch responses to English as literally as possible.
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Table 6.1: Results of one-sided Mann-Whitney U tests comparing the research
groups. The common language effect size is the probability that a random value
from the first group is greater than a random value from the second group.

(a) REAL vs. NONE

p-value U-value CLES

Competence 0.030* 113.0 0.724
Benevolence 0.030* 112.5 0.721
Integrity 0.261 90.0 0.577
Trusting beliefs 0.048* 109.0 0.699
Intention to return 0.109 100.5 0.644
Perceived transparency 0.002** 130.5 0.837
One-dimensional trust 0.137 97.5 0.625
Multidimensional trust 0.002** 131.0 0.840
*p < 0.05, **p < 0.01, CLES = common language effect size

(b) REAL vs. PLACEBO

p-value U-value CLES

Competence 0.023* 106.5 0.740
Benevolence 0.074 97.0 0.674
Integrity 0.054 100.0 0.694
Trusting beliefs 0.026* 106.0 0.736
Intention to return 0.139 90.0 0.625
Perceived transparency 0.041* 102.0 0.708
One-dimensional trust 0.071 96.5 0.670
Multidimensional trust 0.013* 111.0 0.771
*p < 0.05, CLES = common language effect size

(perceived transparency) and 0.143 (integrity); all other values were above 0.327.
Still, it is interesting that in our sample PLACEBO got the lowest median for
competence and integrity (see Figure 6.4).

As in REAL, the qualitative responses concerning perceived transparency
(Q15) showed very different sentiments in PLACEBO. On the one hand, some
participants did not perceive the placebo explanations as real explanations, as
seen in responses like “Wiski just says calculated by the algorithm of . . . ” and
“It would be nice for an extensive explanation as to why it is better to solve
this exercise.” On the other hand, several participants found the explanation
satisfactory, stating: “Wiski says that the algorithm recommends the next
exercise thus I trust the algorithm” and “I don’t think that there needs to be
more explanation as to why an exercise has been recommended.”
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6.4.3 Effects of No Explanations

The qualitative responses on Q15 were quite consistent within NONE: close to
all participants who gave a meaningful response indicated that they did not
see an explanation or missed it. For example, one participant stated: “I find it
unfortunate that [Wiski] does not say why a certain exercise was recommended.
It is nice to know why this exercise fits you, but there should also not be too
much information as then it would not be fun to read.” Yet, surprisingly, two
participants seemed to believe they did receive explanations: “If you want to
solve a new exercise, it is useful that you know why this exercise is recommended,
the website does this well” and “Yes I find that there is enough explanation.”
Finally, one participant formed a particular mental model of our recommender
system: they believed the recommendations depended on the self-reported
mastery level of mathematics in the pre-study questionnaire.

6.4.4 Correlations

Figure 6.5 shows the correlations between the various trust constructs and
one-dimensional trust: competence (τ = 0.69) and integrity (τ = 0.71) are
correlated the most, whereas perceived transparency (τ = 0.17) the least. In
fact, perceived transparency has little to no correlation with any of the trust
constructs. Figure 6.6 shows how all trust scores and questions Q16–Q19 are
correlated. Especially notable is the moderate correlation between satisfaction
with the level of recommended exercises (Q18) and most trust scores. We
also found that one-dimensional trust is moderately correlated with trusting
beliefs (τ = 0.68) and multidimensional trust (τ = 0.52). The latter two
constructs are in their turn correlated too (τ = 0.56).

6.4.5 Recommendation Clicks

Recall from Section 6.3.1 that, after participants solved an exercise about
topic T, our explanation interfaces recommended three exercises to solve next.
Participants could either accept one of these recommendations or ignore them
and return to the exercise overview for topic T (Figure 6.1d) to select a next
exercise themselves. Figure 6.8 shows that participants mostly decided to solve
the first recommended exercise, followed by returning to the exercise overview.
In addition, one-sided Mann-Whitney U tests revealed that the NONE group
accepted significantly less recommendations than both REAL (p = 0.007,
U = 67, CLES = 0.827) and PLACEBO (p = 0.039, U = 72, CLES = 0.727).
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Figure 6.5: Kendall’s τ correlations between trust constructs and one-
dimensional trust.
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Figure 6.7: Distribution of the 37 participating students over the three research
groups.
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6.5 Discussion

This section answers our research questions by discussing how adding real,
placebo, or no explanations to our e-learning platform affected adolescents’
initial trust in our platform. Then, based on the observations, it underlines
the need for tailoring explanations, and reflects upon the broader scope of
explanations and recommendations in e-learning.

6.5.1 Explanations Increase Multidimensional Initial Trust. . .

Previous work has shown that well-designed explanation interfaces can increase
adults’ trust in recommendations (Eiband et al., 2019; Pu and Chen, 2007;
Zhang and Chen, 2020). RQ1 asks whether the same holds for adolescents in
an e-learning context. Two parts of our results suggest a confirmatory answer
if trust is defined as an average of trusting beliefs, intention to return, and
perceived transparency.

First, Table 6.1a shows that adding explanations significantly increased two out
of three trust constructs: trusting beliefs and perceived transparency. The third
construct, intention to return, was not significantly affected, which conflicts with
the findings from Pu and Chen (Pu and Chen, 2007): they reported that higher
competence perception results in higher intention to return. One possible reason
for this conflict might be that Pu and Chen’s explanations assisted in buying
expensive products, which seems more precarious than solving recommended
exercises on an e-learning platform.

Second, participants with real explanations accepted significantly more
recommended exercises than participants with placebo or no explanations.
Building upon the observation by Cramer et al. (2008) that acceptance of
recommendations is correlated to trust, this further suggests that trust was
higher for adolescents who saw real explanations.
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6.5.2 . . . But Not One-Dimensional Initial Trust

However, if trust is measured one-dimensionally with a single Likert-type
question, there was no significant increase in trust compared to using placebo
or no explanations. This shows that RQ1 cannot be answered in a univocal way,
and puts our findings for increased trusting beliefs and multidimensional trust
into perspective. First, our results seem to imply that multidimensional trust
measurements are more nuanced than their one-dimensional counterpart, which
matches with the well-known statement that trust is multi-faceted and cannot
be fully captured by a single question (Hoff and Bashir, 2015; Ooge and Verbert,
2021). Second, as most participants across the three research groups reported
relatively high one-dimensional trust (see Figure 6.4), the explanations may
not have been the most important factor for trusting the e-learning platform.
Instead, participants may have built initial trust mainly because of dynamically
learned factors (Hoff and Bashir, 2015) such as the perceived accuracy of the
recommender system, the exercises’ overall quality, or the platform’s appearance.
This is further backed by the correlations in Figures 6.5 and 6.6: whereas one-
dimensional trust is barely correlated to perceived transparency and need
for explanations (Q16, Q17, Q19), it is correlated to integrity, competence,
and being satisfied with the exercises’ level (Q18). Thus, explanations for
recommendations seem to increase competence, which in turn increases initial
trust. This further justifies the presence of competence in many definitions of
trust (Grandison and Sloman, 2000; Muir, 1987; Wang, 2014).

6.5.3 Placebo Explanations Are a Useful Baseline

RQ2 is concerned with how placebo explanations influence adolescents’ initial
trust in our e-learning platform. We found no significant differences in initial
trust when using placebo explanations over no explanations. This differs
from results by Eiband et al. (2019), who found that placebo explanations do
increase trust compared to no explanations. Reasons for the differing results
could be the low sample size in both their and our study, the different study
context, or the different methods for measuring trust. On a methodological level,
Eiband et al. (2019) suggest using placebo explanations as a placeholder when
insufficient information is available for real explanations. Based on our results,
however, we would discourage this as it may undermine the platform’s perceived
transparency, competence, and integrity (see Figure 6.4 and Table 6.1b; the
p-value for integrity is only slightly larger than 0.05).

However, when studying the impact of explanations, we do see several advantages
for using placebo explanations as a baseline. For example, they allow to collect
information about how critical participants stand towards explanations and



DISCUSSION 145

how attentive they are. In our study, we find it rather encouraging that
most adolescents noticed that our placebo explanations were meaningless.
Furthermore, combining placebo explanations and qualitative responses allows
to gain insights into how much transparency participants actually need. In
our study, some adolescents required a more detailed explanation while others
did not require much or any transparency. This underlines the importance of
research on tailoring explanations based on transparency needs.

6.5.4 Tailoring Explanations Remains Important

Our qualitative data show that not all adolescents perceived the utility and
transparency of our explanation interfaces in the same way. Some adolescents
even had their own perception of what a good explanation is and sought
explanations that go beyond our focus on exercises’ difficulty level and estimated
number of attempts. To accommodate different transparency needs, it seems
essential to tailor explanations to the audience that sees them.

On the one hand, the think-aloud studies in our user-centered design process
gave us some insights into what parts of our real explanation interface may be
tailored. First, middle school students (7th and 8th grade) typically found it
harder to understand the histogram in our explanation, which suggests that this
particular age group might require additional clarification for the histogram or an
entirely different (visual) explanation. Second, some participants valued explicit
wordings in the interface as it allowed them to process the given information
quicker and better, while others considered this as rather redundant.

On the other hand, we can only speculate on how to concretize the tailoring
process. One possibility is to give adolescents direct control over the explanations’
type or detail level, or over whether they see any explanations at all. In
practice, this could be done by iteratively querying students who are exposed
to explanations and then modifying those explanations based on their indicated
needs. A potential drawback is that incomplete or no explanations can
negatively impact adolescents’ mental model of the recommender system, as
illustrated by the participant in our NONE group who believed that the exercise
recommendation depended on their self-reported mastery in mathematics.
Another possibility to tailor explanations is to indirectly customize them
according to personal characteristics (Berkovsky et al., 2017; Millecamp et al.,
2019). There is, however, an ethical challenge here as underage adolescents
cannot or should not always pass delicate personality information without
parental consent.
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6.5.5 Taking a Step Back: Recommendations and Explana-
tions in E-Learning

To conclude, we briefly reflect upon the premise of recommending exercises and
explaining the underlying algorithm in e-learning. Do recommendations always
need explanations? Should e-learning platforms always recommend exercises?
We distinguish between situations in which little or much is at stake.

In low-stakes situations, accepting unsuitable recommendations does not have
severe repercussions, so quickly accepting whichever recommendation seems
reasonable. In our short-term experiment, students understood that accepting
recommendations involved little risk, which may explain why they most often
selected the first recommended exercise (all participants were aware of three
recommendations in our think-aloud studies, so we assume this holds for our
final study). In addition, some teachers instructed students to drill a specific
topic, so it is plausible that some students were more interested in solving as
many exercises as possible rather than carefully choosing their next exercise. In
such ‘drilling’ situations, recommending only one exercise (the best fit) at a time
might be sufficient, and full-fledged explanations might be excessive. However,
in our experiment, students who were left in the dark as to why an exercise was
recommended were more eager to select one themselves in the exercises overview.
Perhaps this was the case because they perceived the displayed difficulty levels
(see Figure 6.1d) as a kind of explanation. Thus, even in low-stakes contexts, it
seems desirable to provide some minimal information about the (recommended)
exercises.

In high-stakes situations, it becomes more important to investigate the benefit
of recommendations, and there, we hypothesize that explanations become more
important too. When students have limited time to prepare for an exam, for
example, it seems plausible that they seek a justification for why they should
spend time solving a recommended exercise. Regarding recommendation, we
have three remarks: (1) in a school context, teachers are in the perfect position
to judge which topics are best suited for a particular student, so it is interesting
to study how they can steer recommendations based on their domain knowledge;
(2) we believe it remains important to give students the freedom to select
exercises themselves, for example to follow teachers’ instructions; (3) contrary
to our basic recommender system with one overall Elo score for each student,
more sophisticated algorithms, e.g., (Abdi et al., 2019), could work with topic-
specific Elo scores and process students’ and teachers’ feedback on the Elo
scores to converge towards reasonable ratings more quickly.
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6.5.6 Limitations and Future Work

Our research has limitations that affect the generalizability of our results. First,
with only 37 participants divided over three research groups, our sample is
relatively small. In addition, although we specifically focused on adolescents,
the age range of 13–18 is still relatively large, especially given the turbulent
stage of life that it spans. Thus, our results should be interpreted cautiously.
Second, since Elo scores of students and exercises become more accurate as more
students solve exercises, the accuracy of recommendations and explanations
might have changed during the experiment. However, as participants were
equally satisfied with the level of recommended exercises (Q18, see Figure 6.4),
this should not have biased the results significantly. Third, some participants
communicated that the exercises on our platform are rather basic. If solving
an exercise takes an insignificant amount of time, the importance of picking
a suitable recommendation becomes smaller. Future studies could thus be
conducted with more challenging exercises to investigate whether our results
hold. Fourth, although the post-study questions for trusting beliefs were based
on those by Wang and Benbasat (Wang and Benbasat, 2005), we modified and
translated them to match them to an e-learning context and adolescents. Future
work can validate our questionnaire. Fifth, our short-term study could only
assess initial trust, whereas trust evolves (Holliday et al., 2016; Nourani et al.,
2020; Ooge and Verbert, 2021). Long-term studies could measure trust implicitly
through loyalty (McNee et al., 2003; Tintarev and Masthoff, 2011). Overall, our
methods and our valuable data on how adolescents trust and interact with a
recommender system can be used as starting points for future research.

6.6 Conclusion

This paper tackled the complex topic of trust in an e-learning platform that
explains why it recommends certain exercises. Specifically, we investigated how
real and placebo explanations affect initial trust. Contrary to the vast majority
of other human-computer interaction research on this topic, we focused on
adolescents as the target audience.

Our randomized controlled experiment with 37 high school students showed
that our explanation interface increases adolescents’ initial trust when trust
is measured as a multidimensional construct of trusting beliefs, intention to
return, and perceived transparency. However, this effect did not hold when we
considered measurements of a single Likert-type question on trust. This two-
sided result seems to imply that one question cannot capture the multi-faceted
nature of trust and that dynamically learned factors such as perceived accuracy
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of the recommendation algorithm and the website’s appearance may be the
leading cause for gaining initial trust in our e-learning platform. Furthermore,
compared to using no explanations, we found that placebo explanations did
not offer any significant trust differences quantitatively. However, the divisive
qualitative responses revealed that tailoring explanations based on transparency
needs remains essential. Finally, we reflected upon whether explanations and
recommendations are always desirable in e-learning, distinguishing between low-
and high-stakes situations.

In sum, while our study has some limitations, our results do seem to indicate
that explaining recommendations on an e-learning platform is an asset for high
school students. Therefore, accompanying recommendations with explanations
should be considered when designing e-learning applications similar to ours
for adolescents. We also advise researchers who study the impact of tailored
explanations to include placebo baselines in their studies: they may give more
insights into how much transparency people actually need, compared to no-
explanation baselines alone.
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The Human Side of Chapter 6
Collaboration and Community
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Shotallo (Sho) was one of the students whose master’s thesis I guided in the
academic year 2020–2021. Coincidentally, when we first met in July 2020, I
had just finished fine-tuning my conditionally accepted paper for CHI PLAY
2020 (Ooge et al., 2020), which was an outcome of my own master’s thesis. Even
cooler was Sho continued working on the e-learning platform I developed as a
student. It was a tough year to conduct the research, especially because of the
COVID context which, for example, made it hard to recruit participants since
staff members in schools were already overworked. When I later saw the stairs
ornament in the picture, I imagined it was Sho battling against the challenges
he faced and I hoped my role had been similar to that of the supportive armrest
of the stairs. Our collaboration taught me the value of truly and deeply working
together in academia, building on each other’s ideas without holding back.

Songs on repeat:

• Blue Coloured Mountain by Szymon
• Breathing by Oscar and the Wolf
• Tough On Myself and the rest of the Cheap Queen (Deluxe) album by

King Princess

150



Stairs in the University Library of KU Leuven – September 2021



In July 2021, I met up with Sho and Kenan (another great student whose
master’s thesis I guided) to celebrate their successful theses. It was the first
time we saw each other in person, but we connected as well as during our virtual
meetings and we had a wonderful evening together. I was so proud of them! I
was touched when they both thanked me with a gift. Sho gave me a beautifully
enamelled plate, which is still in my living room. Every time I put my keys on
it, I think about our collaboration and paper.
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Brown enamelled plate – October 2023



In the period where Sho and I were writing the paper, I shot this picture because
it reminded me of the fully virtual collaboration we had. The video calls we
needed to rely on for months during COVID lockdowns still felt surreal to me,
as if what happened through that medium took place in a parallel world. It
was fun to return to that world with “virtual Sho” in January 2022 when the
excellent reviews came in and we could celebrate our paper acceptance over
Teams.

154



M Leuven museum – September 2021



When the IUI 2022 conference couldn’t be held in person in Helsinki (Finland),
I was pretty discouraged. It was the third conference in a row where I couldn’t
present in person and I was afraid the responses to our paper would be lukewarm
because of that. However, I actually loved the virtual conference in March 2022:
I felt welcomed by the community, and the supportive feedback and the many
interested people were heartwarming. It was partly because of this energy that
I managed to also present a poster and doctoral consortium besides the paper.
To me, the photograph symbolises how a community can flourish under ominous
circumstances. Note the little rain drops (sweat? tears?) on the flowers.

Songs on repeat:

• Washing Machine Heart by Mitski
• Summer depression by girl in red
• Never Knew Love Like This Before (Single Version) by Stephanie Mills
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Gardens of the Royal Greenhouses in Laeken – May 2021





Relevant to this part of the thesis is a visual analytics dashboard by
Aditya Bhattacharya (Bhattacharya et al., 2023), to which I

contributed. The general idea is to assist healthcare professionals
such as nurses and physicians with monitoring patients’ risk of

diabetes onset and recommending measures to minimise that risk (see
Page 246c). Several (visualisation-supported) explanations help gain

insights in the underlying prediction model:

a Data-centric explanations visualise patients’ health data and
compare them to all other patients.

b Counterfactual explanations suggest feasible actions that patients
can take to reduce their predicted risk.

c Feature importance explanations show which factors had the
largest influence on the predicted risk score.

159





Part III

Explainability Through
Visualisation-Supported

Control
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Chapter 7 presents a study on how control over an e-learning
recommender system and visualising its impact affects

adolescents’ trust in an e-learning platform. This chapter was
published as a conference paper (Ooge et al., 2023):

Ooge, J., Dereu, L., and Verbert, K. (2023). Steering
Recommendations and Visualising Its Impact: Effects
on Adolescents’ Trust in E-Learning Platforms. In
Proceedings of the 28th International Conference on
Intelligent User Interfaces, IUI ’23, pages 156–170, New
York, NY, USA. Association for Computing Machinery

This work is the outcome of the master’s thesis by Leen
Dereu, which I guided intensively. As the first author, I
mainly defined the research plan, helped iterate over the

control mechanism and visual designs, and assisted with data
analysis and interpreting the results. Leen conducted all user
studies and did the implementation, whereas I did most of the
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Chapter 7

Steering Recommendations
and Visualising Its Impact

Researchers have widely acknowledged the potential of control mechanisms with
which end-users of recommender systems can better tailor recommendations.
However, few e-learning environments so far incorporate such mechanisms,
for example for steering recommended exercises. In addition, studies with
adolescents in this context are rare. To address these limitations, we designed
a control mechanism and a visualisation of the control’s impact through an
iterative design process with adolescents and teachers. Then, we investigated
how these functionalities affect adolescents’ trust in an e-learning platform
that recommends maths exercises. A randomised controlled experiment with
76 middle school and high school adolescents showed that visualising the impact
of exercised control significantly increases trust. Furthermore, having control
over their mastery level seemed to inspire adolescents to reasonably challenge
themselves and reflect upon the underlying recommendation algorithm. Finally,
a significant increase in perceived transparency suggested that visualising
steering actions can indirectly explain why recommendations are suitable, which
opens interesting research tracks for the broader field of explainable AI.

7.1 Introduction

Recommender systems have long been actively studied to help reduce information
overload in contexts where people are searching for relevant content. To better
anticipate people’s changing preferences and needs, researchers have increasingly
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acknowledged the importance of control mechanisms with which people can
actively steer recommendations (Jannach et al., 2017). Studies have shown
that being able to control recommendations can increase satisfaction with,
perceived understanding of, and trust in a recommender system, which can in
turn increase acceptance of recommendations (Knijnenburg et al., 2012a). At
the same time, too much control can overwhelm people and incur high cognitive
loads (Andjelkovic et al., 2016; Bollen et al., 2010).

However, most research on controlling recommender systems is limited because of
two reasons. First, studied target audiences typically consist of adults, whereas
in practice younger audiences such as adolescents (ages 12–19 (Fitton et al.,
2013)) are just as much, if not more, exposed to recommendation algorithms.
Second, recommender systems are most often studied within contexts such as
multimedia, e-commerce, and other services, and it is unclear whether findings
therein always transfer to other application domains. In a high-stakes domain
such as education, for example, it is crucial to properly understand the effects
of control mechanisms, especially now that e-learning platforms are increasingly
recommending learning content to personalise learning. Thus, it is important to
design control mechanisms fit for an educational context; reflect on how much
control students, teachers, and other parties should get; and find suitable ways
to communicate the impact of steering.

To address these limitations, we conducted a study on how adolescents trust an
e-learning platform when they can steer recommended exercises and see their
control’s effects. Our research questions were as follows:

RQ1. How does the ability to control recommended exercises affect students’
trust in an e-learning platform?

RQ2. How is students’ trust in an e-learning platform affected when they see
a visual representation of their impact when controlling recommended
exercises?

Our research contribution is threefold. First, we present a control mechanism
and a visualisation of its impact, which have been found useful and usable
by adolescents in a user-centred design process. Second, we discovered that a
control mechanism does not necessarily change trust, neither when measured
directly, nor when measured as a construct of competence, benevolence, integrity,
intention to return, and perceived transparency. We also found, however, that
a control mechanism can stimulate adolescents to reflect more upon their
mastery level and the underlying recommendation system. Third, we show that
visualising the control’s impact can increase trust and perceived understanding
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of recommendations. Additionally, we share our dataset1 on how adolescents
trust our platform and interact with our control mechanism, allowing further
exploration and direct comparison in future research. In sum, our contributions
highlight the potential of control mechanisms and related visualisations for
adolescents in e-learning.

7.2 Background and Related Work

This section first discusses existing research on user control in recommender
systems and then briefly highlights the overlap with explainable AI research,
focusing on trust. Next, it zooms in on educational recommenders and relevant
pedagogical background.

7.2.1 Control over Recommendations

In real-world settings, the accuracy of recommendation algorithms is subject
to people’s changing preferences: preference information known to the system
can become outdated, leading to inaccurate recommendations (Amatriain
et al., 2009). To ameliorate this problem, many control mechanisms have been
developed to actively involve people in recommendation processes (Jannach
et al., 2017). For example, during preference elicitation, people can exercise
control through preference forms (Hijikata et al., 2012) or conversational
dialogues (Göker and Thompson, 2000). In addition, after being shown
recommendation results, people can steer these results through critiquing (Chen
and Pu, 2012; Luo et al., 2020; Petrescu et al., 2021), dynamical filtering and
re-sorting (Bostandjiev et al., 2012; O’Donovan et al., 2008), interactive (visual)
explanations (He et al., 2016; Schaffer et al., 2015; Tsai and Brusilovsky, 2019b,
2021), or changing the recommendation algorithms itself (Ekstrand et al., 2015).

Yet, how much control and which control mechanisms a recommender system
should incorporate depends on the context, application, and end-user (Cramer
et al., 2008; Jameson and Schwarzkopf, 2002; Jin et al., 2020). Therefore,
researchers have been studying the effects of providing control to end-users
from different human-centred perspectives (Konstan and Riedl, 2012; Xiao and
Benbasat, 2007), including perceived variety of recommendations, personal
characteristics, trust, and understanding of the recommendation system.
Specifically, Knijnenburg et al. (2012b) found that control can increase perceived
variety of recommendations. Furthermore, preference for control methods in
recommender systems depends on personal characteristics such as personality

1https://github.com/JeroenOoge/steering-recommendations-elearning

https://github.com/JeroenOoge/steering-recommendations-elearning


168 STEERING RECOMMENDATIONS AND VISUALISING ITS IMPACT

traits, need for cognition, and mood (Jin et al., 2020; Knijnenburg et al.,
2011; Millecamp et al., 2018). Regarding trust in recommendations, control
is highly valued for achieving personal goals but can also raise distrust about
whether the control is just an illusion (Harambam et al., 2019). Finally, control
mechanisms can increase overall system satisfaction and improve understanding
of the recommendation process (Knijnenburg et al., 2012a).

7.2.2 Explainable AI and Trust

The challenge to make recommendation algorithms more transparent fits in the
wider field of explainable AI (XAI). Essentially, XAI is an umbrella term for
techniques that explain the outcomes of AI models, such that a specific audience
can better understand and appropriately trust them (Barredo Arrieta et al.,
2020; Guidotti et al., 2019b; Gunning and Aha, 2019; Hind, 2019). Research on
these techniques brings together many concepts of interest, including fairness,
privacy, bias, human reasoning, accountability, and ethics (Abdul et al., 2018).

One frequently studied concept in XAI is trust in automated systems (Lee and
See, 2004). Some work approaches trust from an algorithmic perspective,
for example by considering it equivalent to reputation in recommender
systems (O’Donovan and Smyth, 2005). However, XAI more often approaches
trust from a human-centred perspective. Definitions for human-AI trust are
heavily debated, but most agree that trust is an attitude in a situation of
vulnerability and positive expectations (Vereschak et al., 2021). Thus, from this
angle, trust is a human belief that can be wrongly calibrated to the objective
trustworthiness of an automated system (Han and Schulz, 2020). Besides, trust
building and calibration is influenced by how a system behaves: people’s trust
typically fluctuates until they feel sufficiently familiar with the system (Holliday
et al., 2016; Nourani et al., 2020; Yu et al., 2017a).

Given the lack of well-accepted definitions, researchers measure human-AI
trust in many ways. For example, some researchers consider trust as a one-
dimensional, i.e. monolithic, concept and typically measure it with a single
Likert-type question. While some studies, e.g., (Holliday et al., 2016; Nourani
et al., 2020), apply this strategy because it is quick, they are limited since a
single question cannot measure a complex concept such as trust (Hoff and Bashir,
2015). Alternatively, other researchers consider trust as a multidimensional
ensemble of several constructs which they typically measure with multiple
Likert-type questions. For example, McKnight et al. (2002) introduced trusting
beliefs as a composition of competence, benevolence, and integrity; and Ooge
et al. (2022a) measured trust as the average of trusting beliefs, intention to
return, and perceived transparency.
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7.2.3 Educational Recommender Systems

Recommendation techniques are increasingly being integrated in digital learning
environments (Khanal et al., 2020; Zhai et al., 2021). However, educational
recommender systems differ from their general-purpose counterparts: they
intend to facilitate achieving learning goals, are subject to a pedagogical context,
and consider end-users’ educational role or mastery level instead of personal
characteristics (Garcia-Martinez and Hamou-Lhadj, 2013; Manouselis et al.,
2013). In general, educational recommender systems can support learning
in several ways (Drachsler et al., 2015). For example, they can recommend
courses (Aher and Lobo, 2013; Farzan and Brusilovsky, 2011), suggest additional
learning resources (Tang and McCalla, 2005), and support teachers to improve
their courses or monitor their teaching resources (Gallego et al., 2013; García
et al., 2009).

In the spirit of XAI for education (Khosravi et al., 2022), educational
recommender systems are often requested to allow steering and to justify
their recommendations. Steering could occur, for example, in the form of
explicitly asking learners for feedback on exercises’ difficulty after completing
them (Michlík and Bieliková, 2010). Furthermore, recommendations tailored to
learners’ mastery level can be justified by showing how the system estimates
that mastery level (Kay and Kummerfeld, 2019). In the context of open learner
models (Bull and Kay, 2010; Conati et al., 2018; Hooshyar et al., 2020), Mabbott
and Bull (Mabbott and Bull, 2006) found that learners felt less comfortable
having full control over a learner model, compared to only making suggestions;
and Abdi et al. (2020) found that an open learner model increases understanding
of recommendations.

7.2.4 Estimating Mastery and Exercise Difficulty

From a pedagogical perspective, students’ mastery level can be assessed
based on several frameworks. One famous framework is Bloom’s revised
taxonomy (Krathwohl, 2002), which consists of two dimensions: a knowledge
dimension with four levels (factual, conceptual, procedural, and metacognitive
knowledge) and a cognitive process dimension with six levels (remember,
understand, apply, analyse, evaluate, and create). Another framework is the
Dreyfus model (Dreyfus, 2004), which proposes five skill acquisition levels:
novice, advanced beginner, competent, proficient, and expert.

From a computer science perspective, different techniques can simultaneously
estimate learners’ mastery level and exercises’ difficulty based on how learners
perform while solving exercises (Torkamaan and Ziegler, 2022; Wauters et al.,
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2012). Specialised models such as item response theory (Kadengye et al., 2015)
or knowledge tracing (Guo et al., 2021), however, need to be calibrated on large
item sets with known difficulties (Pelánek, 2016; Wauters et al., 2012). A classic
alternative that circumvents this disadvantage is the Elo rating system (Pelánek,
2016), which was originally introduced by Arpad Elo (Elo, 1978) for rating
chess players. Translated to education, the Elo rating system assigns dynamic
ratings to both learners and exercises: the higher a learner’s rating, the higher
their mastery level; and the higher an exercise’s rating, the more difficult it is.
Furthermore, Elo ratings are of interval scale and their range can be chosen
arbitrarily. Each time a learner l answers an exercise e, the Elo ratings of l and
e are updated as follows:

Elo(l) = Elo(l) + k · (Xle − P (Xle = 1))

and Elo(e) = Elo(e) − k · (Xle − P (Xle = 1)), (7.1)

where k is a fixed learning-rate parameter that determines how strongly the
attempt influences the Elo rating, Xle ∈ {0, 1} reflects whether l answered e
correctly, and

P (Xle = 1) = 1/
(
1 + exp(Elo(e) − Elo(l))

)
(7.2)

is the modelled probability for a correct answer. In words, whenever someone
correctly solves an exercise, their Elo rating increases and the exercise’s
Elo rating decreases, proportional to how unexpected that correct answer
was; vice versa for incorrect answers. Besides its intuitive functioning, the
Elo rating system has the asset that it can be extended to multivariate
settings (Abdi et al., 2019), adapted to consider how quickly students solve
questions (Klinkenberg et al., 2011), and combined with other techniques such
as collaborative filtering (Dahl and Fykse, 2018; Ooge et al., 2022a).

7.3 Materials and Methods

This section presents our e-learning platform and design decisions inspired by a
pilot study with teachers and an iterative design process with students. Next, it
describes our main study design, which was approved by the ethical committee
of KU Leuven (reference number: G-2022-4917).
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7.3.1 E-Learning Platform with Personalised Exercises and a
Control Mechanism

We built upon Wiski, an existing e-learning platform for middle and high
school students (Ooge, 2019). Essentially, Wiski’s core functionality is solving
multiple-choice questions about maths topics in the Belgian school curriculum.
Through an iterative design process with students and teachers, we extended this
core with three functionalities: (a) composing exercise series recommended for
students’ mastery level, (b) giving students partial control over their estimated
mastery level, and (c) visualising the impact of that control. Think-aloud
studies in which adolescents executed predefined tasks on a low-fidelity version
of our e-learning platform ensured that these new functionalities were deemed
useful and usable.

Personalised exercise series Brief semi-structured interviews (Leech, 2002)
with 4 high school teachers learned us that teachers appreciated the idea of an
e-learning platform that recommends exercises tailored to students’ mastery
level. In addition, to give students sufficient time to adapt to new difficulty
levels, teachers advised recommending exercise series instead of individual
exercises. We therefore decided to let our platform estimate students’ mastery
level and exercises’ difficulty with an Elo rating system and then use those
estimates to recommend exercise series. Specifically, whenever a student l would
select a topic to practise, they would start a series consisting of two exercises,
e1 and e2, chosen such that P (Xle1 = 1) and P (Xle2 = 1) were closest to 0.7;
a value yielding reasonably challenging exercises (Klinkenberg et al., 2011).
Probabilities were estimated with a variant of (7.2), which originates from a
chess context:

P (Xle = 1) = 1/
(
1 + 10(Elo(e)−Elo(l))/400)

.

To set up our Elo rating system, students could initialise their Elo rating with
the slider in Figure 7.1, which indicated five thresholds inspired by the Dreyfus
model (Dreyfus, 2004). In the background, the slider’s range corresponded
to the interval [1000, 2000], which roughly corresponds to typical Elo scores
for novice (1000) and expert (2000) chess players. Furthermore, exercises’
initial Elo ratings were set by teachers who participated in our main study.
Concretely, teachers used the thresholds in Figure 7.1 to estimate the difficulty
of all exercises belonging to the subjects they wanted to cover in class. In case
multiple teachers were interested in the same subjects, we only asked one of
them to set the initial ratings, distributing the workload evenly. Finally, we set
the hyperparameter k in (7.1) to 160 to allow for relatively large Elo changes.
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Figure 7.1: Students initialised their maths mastery level with a continuous
slider that indicated five thresholds: novice, advanced beginner, competent,
proficient, and expert.

Control mechanism and impact visualisation Through two rounds of think-
aloud studies with 11 adolescents (2 middle school, 9 high school), we iteratively
designed a control mechanism and a visualisation of the exercised control’s
impact. First, the control mechanism in Figure 7.2 allowed students to modify
their mastery level and thus steer the difficulty of subsequent recommendations.
Specifically, after finishing an exercise series, students could indicate whether
they wanted easier or harder exercises. In the background, this would lower
or raise their Elo rating up to 10%, respectively. The think-alouds learned us
that the slider provided intuitive and sufficient control. In addition, adolescents
preferred to reflect in terms of their mastery level and were sometimes confused
by a preliminary design that also allowed them to steer exercises’ Elo ratings
with a similar slider. Second, the visualisation of the control’s impact in
Figure 7.3 contained three parts: a fixed explanation; a description of how
mastery level changed due to solving an exercise series and subsequent steering;
and a line chart of the latter information. The think-alouds learned us that
adolescents preferred the line chart over an animated bar chart. More details
on our iterative designs can be found in Dereu’s master’s thesis (Dereu, 2022).
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Figure 7.2: After each exercise series, students could steer subsequent
recommendations with a 20-step slider: lowering their mastery level yielded
easier series, and vice versa.

Figure 7.3: Visualisation of students’ steering impact after an exercise series.
The top describes the evolution of students’ mastery level; the bottom visualises
it.
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Figure 7.4: Flow of our study: registering, picking an initial mastery level,
reading a global explanation on the functioning of Wiski, solving three series
(i.e., six exercises) potentially followed by steering one’s mastery level and seeing
its impact, and finally filling out a questionnaire.

7.3.2 Study Design

To answer our research questions, we conducted a randomised controlled
experiment with three groups: in none, participants did not have any control
over recommended exercises; in control, participants could steer their mastery
level with the slider in Figure 7.2; and in control+impact, participants
additionally saw the visualisation of their control’s impact in Figure 7.3. The
flow of our study is depicted in Figure 7.4. First, participants registered on our
Wiski platform and were randomly assigned to one of the three research groups.
Then, they initialised their maths mastery level with the slider in Figure 7.1
and saw one or two of the screens in Figure 7.5 which globally explained Wiski’s
recommendation algorithm. Next, participants chose a maths topic on the
practice page and solved three series, each consisting of two exercises. We chose
this relatively low number of series to ensure participants could finish the study
in under 50 minutes. After each series, participants could adjust their mastery
level and see its impact, depending on their research group. Finally, participants
filled out a questionnaire and could continue to freely use the platform. Thus,
participants’ experience with Wiski only differed in whether or not they could
control their mastery level and see a visualisation of their control’s impact. In
the background, we logged all Elo rating changes.
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Figure 7.5: Wiski explained in two ways how it personalises exercise series.
(l) After registration, all participants saw a global explanation; participants
in control and control+impact saw an additional screen. (r) The
practice page for picking maths topics explained recommendations: “You will
automatically get the two exercises that best suit your level.”

Our final questionnaire contained the 31 Likert-type questions in Table A.2,
scored on a 7-point range. The first part captured trust. Similar to Ooge et al.
(2022a), we measured trust both with a single question and as the average of
trusting beliefs, intention to return, and transparency. Slightly different is that,
for more reliable scores, we measured transparency with three questions from
the ResQue questionnaire (Pu and Chen, 2010) instead of one. The second
part of our questionnaire, also based on ResQue (Pu and Chen, 2010; Pu et al.,
2011), captured three control aspects: overall control, preference elicitation, and
preference revision.

Our questionnaire also contained open text fields that encouraged participants
to elaborate on their Likert-type responses. Furthermore, we explicitly asked
participants whether they trusted our platform for recommending maths
exercises, whether they (would have) liked controlling the desired difficulty
level of exercises, and whether they (would have) liked seeing the impact of
that control. Only the open question on trust was mandatory and the latter
two questions included screenshots similar to Figures 7.2 and 7.3.
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7.3.3 Participant Recruitment

We contacted 30 secondary school teachers in Belgium (Flanders) via email
and LinkedIn, inviting them and their students to participate in our research
during school hours. We asked teachers to not coerce students into participating
and to prepare exercises on paper should some students refuse to participate.
Four teachers accepted our invitation: they passed through a brochure to
students and their respective parents, which communicated our study goals,
data management, and Covid-19 precautions. Interested students gave informed
consent and students under 16 required parental consent. Ultimately, all
76 invited students (ages 12–17) participated in the study. We excluded 5
participants from the analysis due to incomplete questionnaires, ending up with
22 participants in none, 25 in control, and 24 in control+impact.

7.3.4 Data Analysis

We analysed the collected quantitative data in R 4.2.1. To compare the three
research groups in terms of trust and control perceptions, measured as an
average of several Likert-type questions, we first conducted one-way ANOVA
tests after checking the requirements: independence was guaranteed by the
randomised set-up, assuming a normal distribution was plausible given the
central limit theorem, and equal variances were verified with F-tests. Then,
constructs that differed in at least two groups (p < 0.10) were compared in more
detail with unpaired t-tests, which assume the same as ANOVA. To compare
trust measured with a single Likert-type question, we applied Mann-Whitney
U tests to avoid normality assumptions. All t-tests and Mann-Whitney U tests
used p < 0.05 as threshold for significance and were one-sided with alternative
hypothesis that groups with more functionalities score higher.

To get further insights into differences between research groups, we thematically
analysed (Braun and Clarke, 2012) the qualitative feedback stemming from the
open questions in our questionnaire. For presentation here, we translated the
original Dutch responses to English, only correcting grammar and spelling.

7.4 Results

Figure 7.6 shows the number of participants per grade, equally distributed over
the three research groups. To get a detailed understanding of how participants
filled out the Likert-type questions, Figure 7.7 depicts the distribution of
responses in each research group. In turn, Figure 7.8 gives a more aggregated
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Figure 7.6: Participants distributed over the research groups per grade: most
were in 8th and 11th grade.

view of participants’ responses per research group. Recall that multidimensional
trust is the average of trusting beliefs, intention to return, and transparency.
Overall, the median scores of all measured constructs lay between neutral and
rather agree. ANOVA tests found that competence, integrity, intention to
return, control, and preference elicitation did not differ significantly in the three
research groups (p > 0.20).

7.4.1 Effects Without Control or Seeing Its Impact

Qualitative responses confirmed that most participants in none trusted the
platform overall. Over one third of the participants seemed to have based their
trust on the platform’s design and utility: they found that “the website looked
professional,” was “good for practising for tests,” was “a good way to practise
maths to improve,” and seemed to contain exercises that “fit well to the subject
matter.” Furthermore, two participants believed the platform was developed by
teachers or experts. Another third of the participants commented on whether
exercises had a suitable difficulty level. In case they found exercises well-tailored,
participants appeared trusting, for example, “The website looks [...] trustworthy.
I also have the feeling that the exercises are of a good level.” Conversely, a few
participants appeared distrusting or hesitant because they “often got the same
questions they had already answered correctly before,” which gave them the
feeling their mastery level stagnated and they could memorise answers. Finally,
four participants alluded to potentially different trust perceptions in the long
term: “I have not been able to practise and use the site enough, so I cannot
give a good final assessment either (at the moment).”
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Figure 7.7: Diverging bar charts (Heiberger and Robbins, 2014) of responses
to the questionnaire in Table A.2 after reverse-scoring, comparing the three
research groups. Questions have been abbreviated for brevity and have been
grouped per construct for clarity.

Thirteen participants in none commented on obtaining control over recommen-
ded exercises. Apart from one indifferent individual, all of them were in favour
of extra control. Only three, however, clarified why: “This allows you to give a
bit of direction to what exercises you want yourself. Also, if you perform a bit
less well, you still get some more difficult exercises to see what they entail.”

7.4.2 Effects of Controlling Recommendations

The first column in Table 7.1 shows that one-sided tests did not reveal statistical
differences between none and control (p < 0.05). Thus, our sample did
not provide evidence against equal means for any measured construct. Only
transparency and preference revision were borderline non-significant.
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Figure 7.8: Box plots of the responses to the questionnaire in Table A.2 for
each research group. For visual clarity, the overlaying dot plots are slightly
jittered horizontally and vertically.

The qualitative responses on trust showed that two thirds of the participants
in control seemed trusting and mostly supported that perception by the
platform’s ability to tailor exercises: “It seems reliable at first sight and it also
asks good questions adapted to your maths level” ; “It can assess your level and
provide further exercises to raise your level” ; and “[I trust Wiski] if you can
enter your own level.” Furthermore, similar to the responses in none, some
participants referred to the platform’s “professional” design and utility to “learn
something new.” In addition, two participants mentioned repeatedly occurring
exercises but did not seem troubled by that: “Wiski knows when I have some
difficulties with exercises and when I don’t. That’s why difficult exercises are
recommended again.”
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Table 7.1: Comparing the research groups with t-tests (Mann-Whitney U test
for one-dimensional trust). Cells contain the effect sizes (second group mean
minus first group mean).

none vs.
control

none vs.
control+impact

control vs.
control+impact

Benevolence 0.16 (p = 0.263) 0.61 (p = 0.011) 0.45 (p = 0.035)
Trusting beliefs -0.01 (p = 0.529) 0.38 (p = 0.042) 0.40 (p = 0.030)
Transparency 0.29 (p = 0.068) 1.04 (p = 0.000)** 0.74 (p = 0.002)*
One-dimens. trust 0.00 (p = 0.504) 0.78 (p = 0.017) 0.78 (p = 0.020)
Multidimens. trust 0.15 (p = 0.207) 0.55 (p = 0.009)* 0.40 (p = 0.039)
Preference revision 0.33 (p = 0.080) 0.43 (p = 0.030) 0.10 (p = 0.325)

*p < 0.01, **p < 0.001, non-significant results (p ≥ 0.5) are greyed out

There were, however, also mixed trusting sentiments: while six participants
did see benefits in our platform for casual practice, they hesitated to blindly
adopt it in the long term for two reasons. First, some were bothered by the
algorithmic nature of recommendations: “It’s a programme and not a teacher
so I don’t quite trust it” and “[It’s] just an AI [...]. Wiski is good but I’d rather
seek advice from a physical person.” Two quotes might explain this sentiment:
“It remains a computer system that can always be flawed” and “It only has a
limited view of my maths skills.” Second, practice in the context of preparing
tests or exams might require the presence of a teacher: “Sometimes teachers
have their own way of asking questions and this may not always match the
exercises offered by Wiski.”

Furthermore, all respondents in control and control+impact were very
positive about the feature to control recommendations. The ability to modify
the difficulty level of recommended exercises was especially appreciated to not
“get stuck” when “you find the exercises too difficult or too easy” and when
“you want to try something harder but also go for something easy once in a
while.” Yet, one participant noted that while “the slider is nice to make small
adjustments, it’s not convenient to specifically choose a new level because [they]
wanted to go up 1 level in difficulty and went up 2 levels,” alluding to the five
mastery levels depicted in Figures 7.1 and 7.3. Someone else agreed that it was
indeed “difficult to find the perfect level.” Finally, one participant admitted they
were “not sure whether [Wiski] understood [they] wanted slightly more difficult
exercises” when using the slider.
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7.4.3 Effects of Visualising the Impact of Control

The second and third columns in Table 7.1 show the results of comparing
none to control+impact, and control to control+impact, respectively.
Both one-dimensional trust and multidimensional trust increased significantly
(p < 0.05). The latter relates to an increase in two of its components: trusting
beliefs and transparency. First, trusting beliefs increased due to higher perceived
benevolence. Second, participants perceived the platform as significantly more
transparent, with the average score in control+impact lying 1 point higher
than in none. Regarding control, however, only preference revision was deemed
significantly higher in control+impact, compared to none.

In control+impact, most qualitative responses regarding trust were positive.
Similar to control, two thirds of the respondents focused on how well exercises
were tailored. Most of these participants trusted the platform and highlighted
that exercises were well-tailored: “I think Wiski does give exercises at my
level. It’s nice that when you get a lot of exercises right, you get more difficult
exercises to challenge yourself. You notice that they get harder, therefore I trust
the recommended exercises” and “[It’s] handy that this platform can estimate
your level, the exercises recommended by Wiski are therefore well fit.” Yet,
three participants were rather distrustful because exercises seemed ill-tailored
or repetitive to them: “I have now made some exercises and have not yet found
the level that suits me. So I am more inclined to make exercises in my textbook
because I know we should be able to achieve that level.” Other participants
seemed to prefer consulting a teacher or using Wiski only for supplementary
exercises: “I think Wiski is well-made and does its best to help but I don’t
think it can really determine my maths level.” Finally, two participants touched
upon long-term trust: “It’s hard to say whether I fully trust it after just a few
exercises.”

Few participants in control+impact commented on the feature to see their
control’s impact, yet those who did found it useful to see their evolution and
current level. In contrast, in none and control together, most participants
commented on whether they would have liked a screen similar to Figure 7.3;
all but one would. Many comments tapped into seeing and understanding
one’s current mastery level: “This can be useful in several ways to see why
you are at a certain level” and “Then you can see how well some exercises
go.” One participant wrote: “That’s pretty handy to see how bad you are
at maths.” Another frequent related theme was the possibility to see one’s
evolution: “That would be useful because then you know how you are progressing.”
Finally, one participant brought up motivation, stating “I think this could also
be motivating.”
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7.4.4 Correlations

Figure 7.9 shows the relations between all measured trust-related and control-
related constructs. Regarding the trust-related constructs, we found that
competence, benevolence and integrity were moderately correlated to one another
and were equally correlated with one-dimensional trust (all around r = 0.60).
Furthermore, intention to return turned out to be most correlated to competence
(r = 0.57). Regarding the control-related constructs, preference elicitation and
preference revision correlated strongly (r = 0.68), but were barely correlated
to control. In fact, control had little to no linear relationship with any of the
constructs. Finally, the most correlated pair of trust-related and control-related
constructs consisted of transparency and preference revision (r = 0.52), which
is still relatively low as one construct explains only 25% of the variance in the
other.

7.4.5 Elo Ratings

Figure 7.10 shows how participants’ Elo ratings evolved during the experiment.
In all research groups, the ratings gradually increased and finally participants
in none had a lower average increase (58) than participants in control (101)
and control+impact (135). Yet, the trends and Figure 7.11 also show
that participants in control and control+impact most often increased
their mastery level further after completing an exercise series. Ignoring Elo
changes due to control, the average Elo increased with 60 in control and 98
in control+impact. According to one-sided t-tests, however, these average
Elo growths were not significantly larger than in none (p = 0.132). Figure 7.11
furthermore shows that participants used the control mechanism reasonably:
most dots are in the top right quadrant, indicating that participants often
further increased their mastery level after a successful exercise series; the left
quadrants show that participants rarely boosted their mastery level after an
unsuccessful exercise series and instead kept or downgraded it.

7.5 Discussion

This section interprets our results and answers our research questions. Based
on our findings, we reflect upon implications for the explainable AI field and
real-world e-learning platforms.
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Figure 7.9: Relations between trust-related and control-related constructs.
Lower triangle: dot plots with fitted regression lines. Diagonal: density plot
of constructs. Upper triangle: correlations colour-coded by value (*p < 0.01,
**p < 0.001). Non-significant relations (p ≥ 0.05) are greyed out.



184 STEERING RECOMMENDATIONS AND VISUALISING ITS IMPACT

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

Start Exercise1 Exercise2 Control1 Exercise3 Exercise4 Control2 Exercise5 Exercise6 Control3

Evolution of participants' Elo ratings during the experiment

Average trend for participants in NONE, CONTROL, and CONTROL+IMPACT

Figure 7.10: Evolution of participants’ Elo ratings during the experiment and
the average evolution per research group.

7.5.1 Sanity Check for Responses About Control

Before interpreting our results, we take a closer look at the findings regarding
control. First, the quantitative results showed no higher sense of control in
research groups with control, compared to the baseline without control. This
unexpected result could be due to the measurement instrument rather than an
actual lack of control: Figure 7.7 shows quite polarised responses on Q18–Q21,
indicating that the questions may have been interpreted differently because they
were too broad. In addition, the qualitative data confirmed that participants in
control and control+impact were very aware of the control mechanism
and Figure 7.11 shows that they often used it. Second, preference elicitation
was perceived equally amongst the three research groups. This was expected
as participants could only indicate initial preferences by setting their initial
mastery level and choosing maths topics. Third, also as expected, preference
revision increased (almost) significantly when the control mechanism was added,
but not when the control’s impact was visualised. These observations support
the sanity of our results.



DISCUSSION 185

−10

−5

0

5

10

−200 −100 0 100 200
Change in Elo after an exercise series

P
er

ce
nt

ag
e 

of
 c

on
tr

ol

Group CONTROL CONTROL+IMPACT

Figure 7.11: Elo changes after an exercise series compared with the control
percentage chosen via the slider in Figure 7.2 (Easier = −10% and Harder =
10%).

7.5.2 Control Does Not Affect Trust but Stimulates Self-
Reflection

RQ1 was concerned with how a control mechanism affects trust in our e-learning
platform. Table 7.1 contains no evidence for significant effects on any of the
measured trust components; only perceived transparency was borderline. The
fact that one-dimensional trust did not differ significantly in none and control
suggests participants did not consider the control mechanism a major factor for
calibrating their trust.

However, the qualitative responses on trust interestingly revealed more self-
reflection. Specifically, while participants in none most often described the
platform’s utility and design while discussing trust, participants who could
control recommendations spontaneously referred twice as much to whether
exercises were tailored to their personal mastery level. Some participants
even reflected on the recommendation algorithm itself, questioning whether
it was as competent as teachers. Thus, our qualitative findings suggest that
control mechanisms similar to ours foster awareness of an underlying manipulable
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algorithm. Growing such awareness seems very valuable in a world that becomes
permeated by applications relying on algorithmic decision-making, so future
experiments could investigate whether and why this effect holds in larger samples.
One plausible explanation could be that controlling mechanisms are uncommon
in current e-learning platforms and therefore caught participants’ attention.

7.5.3 Seeing the Impact of Control Grows Trust

RQ2 asked how visualising the impact of control influences adolescents’ trust
in our e-learning platform. Our results showed a significant increase in
one-dimensional trust, which suggests that the visualisation played a big
role in growing trust. Multidimensional trust also increased significantly,
partly due to a higher perceived benevolence. This could be explained by
the following observation: Figures 7.10 and 7.11 show that most exercise
series led to an increase in Elo rating, which implies that participants in
control+impact mostly saw increasing mastery evolutions. Thus, it seems
plausible that participants who saw the visualisation considered our platform
as more benevolent than participants who did not.

7.5.4 Visualising the Impact of Control is a Kind of Explanation

The most heavily changed trusting component was transparency: participants
who saw their control’s impact visualised considered the recommendations as
more transparent. This suggests that participants experienced the visualisation
as a sort of explanation. However, at first sight, it is not entirely clear what part
of the recommendation process this explanation clarified for them. Comparing
the responses for Q15–Q17 in Figure 7.7, we observe that roughly half of
the responses for Q17 were negative, whereas most responses for Q15 and
Q16 were positive. This seems to imply that participants did not view the
visualisation of their control’s impact as a direct explanation for why they
received specific recommendations; which they indeed should not have. Rather,
the visualisation arguably acted as an indirect explanation: participants felt
they had a better understanding of why recommendations were suitable for them
because they could repeatedly see how the e-learning platform estimated and
modified their mastery level. Overall, visualising the impact of control seems to
have reinforced participants’ mental model (Johnson-Laird, 1983; Kulesza et al.,
2012) of the recommendation system by gradually clarifying the behaviour of a
crucial component of the recommender, namely iterative estimation of learners’
mastery level.
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7.5.5 Implications for Explainable AI Research

Our findings potentially have interesting research implications for the broader
field of explainable AI. First, visual explanations intended for a lay audience
may not need to explain complete algorithms in detail. Instead, explaining
crucial components could suffice when complemented with a global reasoning
rationale of the algorithm. In our case, this global reasoning rationale was
provided as a simple sentence on the practice page (“You will automatically get
the two exercises that best suit your level” in Figure 7.5). Another provoking
idea is that control by itself could increase transparency. This turned out to
be the case in our sample, although the increase was borderline non-significant.
We hypothesise that on our platform the combination of exercising control and
seeing the difficulty level of subsequently recommended exercises acted as a kind
of model inspection (Guidotti et al., 2019b). In other words, participants could
steer the recommendation algorithm and then see the impact on outcomes of
the recommendation algorithm. If future research could confirm our hypothesis,
this might be one of the earliest examples of effective model inspection with
adolescents. Third, the qualitative responses regarding motivation open up
research tracks on whether (visual) explanations can inherently motivate
students to, for example, practise more, challenge themselves more, or – being
hopeful – even appreciate maths more as a whole.

7.5.6 Taking a Step Back: Technology-Enhanced Learning
and Control

Before we conclude, we briefly reflect upon control in e-learning. How much
control should students get and does that imply taking control away from
teachers? Should students always see their control’s impact with respect to
their mastery level?

Overall, students received our platform’s control mechanism enthusiastically
and seemed to have used it reasonably. The faster increase in Elo rating
for students with control also suggests that the control mechanism allowed
them to more quickly converge towards exercises with difficulty levels that best
suited them. Moreover, the control mechanism and its accompanying impact
visualisation seemed to have prompted students to think more consciously about
which difficulty levels they could handle and how their mastery level changed.
This is an important metacognitive skill, which is crucial in self-regulated
learning (Zimmerman, 1990). For these reasons, we believe giving control to
students can be an asset for e-learning platforms.
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Yet, we see at least two nuances. First, giving too much control to students can
be disadvantageous when it causes discomfort because of the responsibility it
entails (Mabbott and Bull, 2006). In addition, students could abuse control over
their mastery level in evaluative contexts: artificially decreasing their mastery
level could allow them to obtain higher success rates when solving exercises, and
artificially increasing it could trick inattentive teachers into overestimating their
abilities. Thus, it is important to balance the amount of control with factors
such as pedagogical responsibility and the use context and to not overly rely on
Elo ratings for evaluation purposes. Second, providing students with control
does not make teachers redundant. In our study, participants highlighted the
still valuable role of teachers: providing extra feedback on students’ progress,
and verifying that exercises on the e-learning system are aligned with the
curriculum and their usual style of interrogating. Furthermore, by monitoring
or adapting students’ mastery levels, teachers could additionally guide students
who under- or overestimate themselves because of the Dunning-Kruger effect
(Dunning, 2011).

Our visualisation of how control affected mastery level, and thus recommended
exercises, was well-received too. However, some comments regarding motivation
made us realise the potentially demotivating effects of frequently showing
downward evolutions in students’ mastery levels. Therefore, we argue that
visualisations related to mastery level should be shown sufficiently infrequent
to avoid potential negative motivational effects, yet frequently enough to
allow intervention in case of learning issues. Such interventions could be
facilitated by e-learning platforms in the form of alerts that inform students
when it seems advisable they ask teachers for additional support. In line
with teachers’ desires in our pilot study, those alerts could also be shown to
teachers so they can intervene, similar to existing work in the learning analytics
community (Akçapınar et al., 2019; Denden et al., 2019).

7.5.7 Limitations and Future Work

Our research has several limitations which restrict how well our findings
generalise. First, our sample was relatively small so some findings may not
hold in larger studies and we could not investigate differences between age
groups. Although we controlled for multiple testing by only conducting t-
tests when ANOVA indicated a group-wise difference, false positive differences
could remain. Second, since our study was not focused on developing a highly
accurate recommender system, we generated recommendations with a simple
Elo rating system. More sophisticated algorithms such as multivariate Elo-
based models (Abdi et al., 2019) or knowledge tracing (Guo et al., 2021) could
be considered for platforms deployed in the real world, especially because
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competence is rather highly correlated to intention to return (see Figure 7.9).
Third, the mechanism to steer recommendations was quite simple and only
affected recommended exercises indirectly by altering mastery levels. Future
studies with adolescents in e-learning could further study more advanced control
mechanisms that affect recommendations directly, for example steering through
interactive visualisations. Fourth, as our study was conducted in a class context,
it is possible that some students noticed that their peers were shown a different
version of our platform. Although we did not observe copying during the
study, we are wary of adolescents’ resourcefulness to copy and the bias it
may have entailed. Fifth, as some participants indicated, our study was
restricted to capturing trust while participants were arguably still familiarising
themselves with the recommender and control mechanism. In this learning
phase (Yu et al., 2017a), trust perceptions can change briskly, for example due to
encountering unexpected behaviour such as repeated recommendations (Holliday
et al., 2016; Nourani et al., 2020; Yu et al., 2017a). Thus, as briefly using our
platform might have hampered reliable long-term trust assessment, our results
should be interpreted cautiously. Sixth, our results regarding transparency
relied on self-reported understanding. Future research could complement
transparency measurements with testing effective understanding, for example
through adjusted tasks. Overall, we hope our suggestions help to pursue research
into providing adolescents with control over recommendations in e-learning.

7.6 Conclusion

Our research explored how a control mechanism for steering recommended
exercises and a visualisation of the control’s impact influence adolescents’ trust
in an e-learning platform. We measured trust both with a single Likert-type
question and as a multidimensional construct of trusting beliefs, intention
to return, and perceived transparency. In addition, we collected qualitative
feedback to further contextualise students’ responses. Our randomised controlled
experiment with 76 middle and high school students showed that our control
mechanism did not significantly change any trusting perception. However,
adolescents appreciated the feature and seemed to reflect more upon their
mastery level and the recommendation system, which is highly favourable in
the context of self-regulated learning. Furthermore, visualising the control’s
impact did increase trust and perceived understanding, which suggests several
implications for the broader field of explainable AI. In sum, even though our
study had limitations, we hope our methods, designs, and findings inspire
other researchers to further explore the link between control mechanisms,
explainable AI, and motivational techniques, especially in e-learning and
targeting adolescents.



190 STEERING RECOMMENDATIONS AND VISUALISING ITS IMPACT

Acknowledgements

We thank all students who participated in our study, their parents for consenting,
and their teachers for inviting us into their classrooms. This work was
supported by Research Foundation–Flanders (FWO, grant G0A3319N), Flanders
Innovation & Entrepreneurship (imec.icon grant HB.2020.2373), and KU Leuven
(grant C14/21/072).



The Human Side of Chapter 7
Consistent Work Ultimately Pays Off
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Leen was one of the students whose master’s thesis I guided in the academic
year 2021–2022. We started collaborating right after my partner and I moved to
a new apartment, which made it feel as if the research plan and the apartment’s
interior took shape simultaneously. Although I’m still terrible at it, Leen taught
me the value of consistent and planned work. Each time we met, she had
processed all my feedback and made significant progress, which was a pleasure
because it allowed us to continuously polish the work. The photograph reminds
me of how many small efforts can together form an impressive end result. From
August to October 2023, I extended and refined Leen’s work into the paper in
Chapter 7. It was the first time I finished a paper without stressing too much
about it.

Songs on repeat:

• Spellbound by Siouxsie and the Banshees
• Keep Running by Tei Shi
• Almost There by Anika Noni Rose
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Ceiling of the Stadsmus museum in Hasselt – July 2022



The paper got accepted with excellent reviews and thanks to the Gary Marsden
Travel Award from SIGCHI, I could travel to the IUI 2023 conference in Sydney.
Then came another surprise: Li Chen and Yucheng Jin invited me to make a
stopover in Hong Kong for a two-week research stay at their lab in Hong Kong
Baptist University. Their hospitality and the university campus were amazing,
and everyone I met was extremely helpful and kind. Besides collaborating on
new research and giving a seminar, I learnt a lot from living in Hong Kong and
exploring the area. One weekend, my friend Xianglin Zhao toured me around
Hong Kong Island and made this unique picture with his drone.
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Central district and Victoria harbour in Hong Kong – March 2023



IUI 2023 in Sydney (Australia): after 3.5 years of PhD, I could finally present a
paper at an in-person conference. Such an exhilarating feeling! I remember I
couldn’t suppress a little cheer when I stepped on the stage to present the work
Leen and I did. Similar to CHI 2022 in New Orleans, the in-person experience
gave me a huge mental boost, especially when bumping into people with research
topics similar to mine or people I’d met before virtually, and going for group
dinners. Even though I truly enjoyed the conference and the city, I was also
panicking about a postdoc proposal that needed to be submitted. On D-Day,
I was moved when my friend Clara Bove especially returned from a trip into
the city to support me. After the submission and last conference event, we
continued discovering the stunning city and had so much fun that we forgot
to take a picture together. Only later did I notice that this photograph of the
reflected striking blue sky vaguely shows our silhouettes.

Songs on repeat:

• Flowers (Demo) by Miley Cyrus
• Handstand by Miley Cyrus
• Violet Chemistry and the rest of the Endless Summer Vacation album

by Miley Cyrus
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Darling Harbour in Sydney – March 2023



The three weeks in Hong Kong and Sydney had been wonderful yet busy and
draining. On my way back to Belgium, I therefore stayed a couple of days
in Singapore to catch my breath a little. Ironically, I was often gasping for
breath because the country was so beautiful. I just couldn’t get enough of the
parks, museums, architecture, historical sites, diverse population, and perfect
weather. Especially fascinating was how seamlessly nature and the bustling city
fused, as captured by the iconic “super trees” in Gardens by the Bay, which
were spectacularly lit at night. Reflecting upon my latest travels, I realised how
important I find international collaboration and learning from other cultures,
and to this day, I am incredibly grateful for my experiences in Australasia.
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Gardens by the Bay in Singapore – March 2023





Chapter 8

Steer, See Impact, Solve: How
Learner Control and Visual
Explanations Impact Learning,
Motivation, and Trust

Technology-enhanced learning and AI are on the rise, leading to questions about
how learners can better understand the AI models that guide their learning
process on e-learning platforms and how they can steer those models. Such
functionalities are not only important for calibrating trust, but also for learning
goals such as metacognition, motivation, and enjoyment. Fortunately, the
learning research community has a long tradition in making automated learning
systems more transparent and controllable with open learner models and learner
control mechanisms, aligning with the modern stream of explainable AI for
learning. Yet, published research in this area typically lacks needs studies, does
not focus on controlling the selection of learning materials, and does not include
interactive visualisations that show how the AI models underlying learning
systems behave. Our work addresses these underexplored topics. Through an
elaborate human-centred design process and a randomised controlled experiment
with 170 adolescents in school, we designed and evaluated a control mechanism
that enables learners to steer the difficulty of automatically composed exercise
series, complemented with visual what-if explanations and motivational feedback.
Our design process with pedagogical experts and adolescents uncovered many
insights concerning XAI and control for education, for example that why
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explanations might be more beneficial for teachers than young learners. Next,
our experimental results suggest that control, visual what-if explanations, and
motivational feedback did not have a strong short-term impact on motivation,
metacognition, enjoyment, learning performance, or trust. However, they
persuaded adolescents to steering towards more difficult exercises. Overall, these
findings spark ideas for long-term studies on interactive visual explanations and
control for adolescents and learners in general.

8.1 Introduction

In recent years, education is increasingly embracing technology-enhanced
learning for personalised learning (Verbert et al., 2012) and learning is shifting
away from traditional classrooms to e-learning environments (Salau et al., 2022).
These evolutions make large-scale data collection possible, which in turn allows
further adoption of artificial intelligence (AI). The histories of AI and education
are deeply intertwined (Doroudi, 2022), leading to many examples of how AI can
recommend learning materials (Drachsler et al., 2015; Khanal et al., 2020; Salau
et al., 2022), automatically assess learners’ mastery level (Galici et al., 2023;
Klinkenberg et al., 2011; Torkamaan and Ziegler, 2022), and create educational
content (Bitew et al., 2022; Khosravi et al., 2023; Kurdi et al., 2020; Ni et al.,
2022). Similar to other domains, calls for explainable AI (XAI) and control
mechanisms are emerging in education now (Khosravi et al., 2022). Interestingly,
education has a long tradition in both aspects. First, to provide transparency,
education has long been studying open learner models, which show learners
what the system knows about them (Bodily et al., 2018b; Bull, 2020; Bull and
Kay, 2007; Bull and McKay, 2004; Rahdari et al., 2020). Second, to foster
metacognitive skills (Zimmerman, 1990) such as self-knowledge and reflection,
learners have been given control over all learning aspects, including their learner
model, the way learning materials are being selected and presented, and learning
materials’ difficulty (Brusilovsky, 2023; Bull and Pain, 1995; Kay, 2001; Mabbott
and Bull, 2006; Papoušek and Pelánek, 2017).

However, existing research typically does not include needs studies of end
users (Bodily et al., 2018a), potentially because it is challenging to meaningfully
involve non-technical stakeholders throughout the design process of
educational systems (Holstein et al., 2019). Given the rise of AI-supported
educational systems, it is important to map end users’ explainability and
control needs. Furthermore, there is a lack of research on control mechanisms
for selecting learning materials in collaboration with AI models (Brusilovsky,
2023). One possible reason is that learners might not always be ready to
exercise control over learning materials to insufficient knowledge, especially



BACKGROUND AND RELATED WORK 203

when they are young (Brusilovsky, 2023). Yet, learner control has generally
been considered motivating and enjoyable (Clark and Mayer, 2011; Long and
Aleven, 2017), so it seems beneficial to further explore mechanisms for shared
learner control. Finally, current explanations are typically static, which is why
even the wider XAI community requests for studies about whether interactive
explanations have different effects (Abdul et al., 2018).

To address these challenges, we conducted an extensive iterative design process
with end users in the scope of an e-learning platform, focusing on why and
what-if explanations, and a mechanism for learner control over the difficulty
of recommended exercises. Then, we investigated how our designs affected
adolescents’ learning attitudes and perceptions of an e-learning platform. Our
general research questions were as follows:

RQ1. How can visual why and what-if explanations meet learners’ and teachers’
explainability needs on e-learning platforms and how should these
explanations be designed?

RQ2. How can learners share control over the difficulty of recommended exercises
and how should such a control mechanism be designed?

RQ3. How do visual what-if explanations and shared control over recommended
exercises affect adolescents’ motivation, metacognition, enjoyment, and
trust in e-learning platforms?

Our research contributes in two ways. First, our extensive design findings reflect
broader needs for learner control and explanations for recommendations, both
for adolescents and other educational stakeholders such as teachers. In addition,
it seems particularly relevant for educational XAI to investigate how it can help
motivate learners. Second, our randomised controlled experiment shows that
control mechanisms combined with visual explanations and feedback do not
necessarily have strong short-term effects regarding motivation, metacognition,
enjoyment, and trust. However, visual explanations and feedback do affect
how adolescents interact with the control mechanism. We hope our methods
and findings inspire longer-term follow-up studies that explore the interplay
between learner control and transparency in education, especially when focused
on metacognition and motivation.

8.2 Background and Related Work

This section provides some background and previous research findings about
visual explanations and control mechanisms for AI models, and human-centred
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concepts such as metacognition, motivation, and trust in AI systems.

8.2.1 Visual Explanations for AI Models

Researchers who focus on algorithmic XAI have developed many explanation
techniques to provide insights into how black-box AI models get to their outcomes
and behave (Adadi and Berrada, 2018; Barredo Arrieta et al., 2020; Du et al.,
2019; Guidotti et al., 2019b; Montavon et al., 2018; Stiglic et al., 2020; Vilone
and Longo, 2020; Zhang and Chen, 2020). These explanations often capture
a lot of information, which is why visualisations are often applied for effective
communication. Examples include visualising feature importances (Bertrand
et al., 2023; Lundberg and Lee, 2017), interactive sensitivity analysis (Hohman
et al., 2019a; Szymanski et al., 2021), why explanations about recommendation
processes (Bostandjiev et al., 2012), and example-based explanations (Cai
et al., 2019). For education in specific, Ooge et al. (2022a) justify recommended
exercises by visualising information about the collaborative filtering step, Barria-
Pineda (2020); Barria-Pineda and Brusilovsky (2019); Barria-Pineda et al. (2018)
justify recommended exercises by showing how likely learners are to solve them
correctly, and Abdi et al. (2020) complement recommendations with a visual
open learner model.

8.2.2 Control Over AI Models

The rise of AI-supported systems has raised questions about how control over
decision-making should be distributed among AI systems and the people using
them: should AI systems be given full control, or should there be human-AI
collaboration (van Berkel et al., 2021)? This lead to more questions such as when
people should be able to exert control and how they can do so. Furthermore,
control and transparency are two sides of the same coin (Storms et al., 2022):
having control over an AI system can grow better understanding of how it
behaves and makes decisions, and, conversely, seeing how an AI model comes to
its outcomes might evoke a higher need for correcting or steering it. This shows
how user control is tightly linked to explainable AI, which is why it has been
extensively studied in the general setting of recommender systems (Jannach
et al., 2017).

In the context of learning, it is customary to talk about learner control (Brusil-
ovsky, 2023; Kay, 2001). Different learner control mechanisms have been
proposed, including directly changing the learner model, persuading the system
to change it, or negotiating about the model contents (Bull and Pain, 1995;
Mabbott and Bull, 2006). These mechanisms yielded mixed results. For example,
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on the one hand, Long and Aleven (2016, 2017) found that learner who had
access to both an open learner model and control mechanism performed better.
Furthermore, Ooge et al. (2023) found that combining learner control with a
visualisation of its effect improved adolescents’ trust in an e-learning platform.
On the other hand, Papoušek and Pelánek (2017) suggested that giving learners
direct control over question difficulty is not beneficial overall, even though
it can lead to higher engagement for learners who prefer easy questions. In
addition, Jansen et al. (2016) found no beneficial effects for maths practice,
improvement of maths skills, or self-belief concerning maths when learners could
adapting the success rate of exercises.

8.2.3 Metacognition, Motivation, and Trust

Explanations for AI models and control mechanisms can affect many human-
centred concepts. In education, researchers have worked on giving control
to learners in the light of self-regulated learning, which aims to actively
involve learners in their learning process in terms of metacognition and
motivation (Zimmerman, 1990). Furthermore, the XAI community has
acknowledged the important role of trust in human-AI interaction.

Metacognition refers to the awareness and understanding of one’s own cognitive
processes, including knowledge of one’s strengths and weaknesses, monitoring
of learning progress, and the ability to regulate and adapt learning strategies
accordingly. By developing metacognitive skills, students can become more
effective learners and achieve better learning outcomes, especially in combination
with high learning motivation (Bahri and Corebima, 2015). The latter refers to
the internal drive and desire to engage in learning activities (Lin et al., 2017).

According to organismic integration theory (Deci and Ryan, 2012a,b), motivation
is no dichotomy of motivated and amotivated, but rather a continuum spanning
intrinsic motivation, integrated regulation, identified regulation, introjected
regulation, external regulation, and amotivation (Pelletier et al., 2013). Where
intrinsically motivated people wish to complete specific tasks simply for the
pleasure of it, amotivated people have no motivation at all. Motivation is
crucial in education as it might affect performance (Filgona et al., 2020). To
boost academic motivation and competence, social scientists have proposed
the concept of wise feedback (Cohen et al., 1999; Yeager et al., 2014), which
refers to a feedback approach where teachers convey high standards for students’
performance together with belief in the students’ potential to reach those
standards (Yeager et al., 2017). This is related to stimulating self-efficacy, which
is the belief learners hold about their capabilities (Bandura, 1995; Margolis and
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Mccabe, 2006). Learners with high self-efficacy are willing to put more effort
into learning and have higher persistence when facing difficulties (Khine, 2013).

Trust in AI systems is a slippery concept because many definitions have been
proposed but none of those is widely accepted (Jacovi et al., 2021; Madsen and
Gregor, 2000; Vereschak et al., 2021). Moreover, trust is challenging to measure
because it evolves while using a system (Holliday et al., 2016; Nourani et al., 2020;
Ooge and Verbert, 2021) and is affected by domain expertise (Nourani et al., 2020;
Ooge and Verbert, 2021, 2022), visualised information and uncertainty (Mayr
et al., 2019; Sacha et al., 2016), model accuracy (Papenmeier et al., 2022; Yin
et al., 2019), level of transparency (Kizilcec, 2016), and many other factors (Hoff
and Bashir, 2015). In addition, XAI researchers agree that simply growing
trust is not always desirable: more important is appropriate trust (Gunning and
Aha, 2019) and trust calibration (Han and Schulz, 2020; Solhaug et al., 2007),
which implies that people should also distrust ill-performing systems. Some
researchers even argue that XAI should abandon studying trust and rather
focus on utility (Davis et al., 2020).

8.3 Methods and Materials

This section presents our e-learning platform and design decisions inspired by a
pilot study with teachers and an iterative design process with students. Next, it
describes our main study design, which was approved by the ethical committee
of KU Leuven (reference number: G-2022-5810-R2(MIN)).

8.3.1 E-Learning Platform With Learner Control

We built upon Wiski, an existing e-learning platform for middle and high school
students to practise maths (Ooge, 2019). Wiski contains thousands of multiple-
choice questions on maths topics in the Belgian school curriculum and previous
work has extended the platform with recommender systems along with visual
explanations (Ooge et al., 2022a) and a learner control mechanism (Ooge et al.,
2023). In our new extension of the platform, we worked towards combining
both. Concretely, we refined one of the earlier exercise recommender systems to
better personalise exercise series, implemented a new learner control mechanism,
and incorporated what-if explanations and wise feedback. This yielded a new
overall workflow for learners using the platform, as shown in Figure 8.1. The
following paragraphs describe our three main adaptations incorporated in this
workflow in detail.
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Personalised exercise series Similar to previous work (Ooge et al., 2023,
2022a), our platform automatically generates exercise series tailored to learners’
mastery level by following a two-phase process.

In the first phase, an Elo rating system (Elo, 1978; Pelánek, 2016) simultaneously
estimates exercises’ difficulty and learners’ mastery level. In a nutshell, this
estimation is based on iteratively updating ratings for both learners and
exercises based on how learners solve those exercises. For example, when a
learner correctly solves an exercise, their Elo rating increases and the exercise’s
Elo rating decreases; the change size relies on the difference between the
initial ratings. The opposite happens when a learner answers an exercise
incorrectly. Over time, these ratings converge to learners’ ‘true’ mastery level
and exercises’ ‘true’ difficulty. Meeting the call for fine-grained mastery and
difficulty assessment in earlier work (Ooge et al., 2023, 2022a), our platform
implemented a multivariate Elo rating system (Abdi et al., 2019), meaning that
learners had different ratings for different topics instead of one global rating.
This acknowledges, for example, that learners can excell in solving equations
yet struggle with geometry. Technical details about our implementation of the
Elo ratings can be found in Appendix A.2.

In the second phase, a recommender system uses the Elo ratings to determine
which exercises best match a learner’s mastery level. Concretely, whenever
learner L wants to practise a specific topic, the system lists all exercises on
that topic apart from the last 20 that L solved. Then, for each exercise in
the list, the system computes the probability that L would solve it correctly
according to formula (A.1) in Appendix A.2. Finally, the three exercises with
probabilities closest to a difficulty hyperparameter D are recommended. By
default, our recommender sets D = 0.5, aiming for exercises that are neither too
easy nor too hard and thus keep the learner in the so-called zone of proximal
development (Murray and Arroyo, 2002).

Learner control Previous work (Ooge et al., 2023) has shown that high school
students appreciate learner control. At the start of each exercise series, our
platform therefore allows learners to steer the difficulty of exercise series with
a slider, as depicted in Figure 8.1 2 . In the background, this slider changes
the difficulty hyperparameter D in our recommender system from 0 (very easy)
to 1 (very hard) with steps of 0.1. Note that this mechanism gives learners
control over how difficult the exercise series will be, but not over its exact
composition. Moreover, contrary to the control mechanism in (Ooge et al.,
2023), our approach does not allow learners to change their mastery level directly.
Instead, it allows learners to give a kind of signal to the platform that it over-
or underestimates their mastery level.
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Figure 8.1: The overall workflow on our e-learning platform contains 3 steps:
1 learners choose a maths topic they want to practice and initially inform

themselves of the platform’s mastery level system; the platform automatically
composes an exercise series of 3 exercises that fits the learners’ mastery level,
but learners can choose to steer the series’ difficulty with a slider, additionally
seeing 2 a a what-if explanation, or alternatively 2 b wise feedback; 3 learners
complete the resulting exercise series and get immediate feedback on their
answers’ correctness.
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What-if explanation and wise feedback Communicating the impact of learner
control is essential to foster trust in e-learning platforms that recommend
exercises (Ooge et al., 2023). We therefore accompany our control mechanism
with the visual what-if explanation shown in Figure 8.1 2 a. This visualisation
explains the potential impact of a recommended exercise series: it shows learners’
current mastery level (grey label) together with the level they would obtain
if they correctly solve all three exercises in the recommendation (blue label).
The what-if explanation is fully linked to the control mechanism: when learners
change the slider, the blue label changes position accordingly; higher chosen
difficulties lead to a bigger increase and vice versa.

To motivate learners and stimulate them to reasonably challenge themselves,
we also implemented a form of wise feedback linked to the control mechanism.
Figure 8.1 2 b shows how the platform’s mascotte provides this wise feedback
whenever learners choose a specific difficulty level with the slider. Specifically,
splitting the [0, 1] interval of difficulty levels into five equidistant subintervals,
there are three feedback variants for each subinterval and one random variant
is shown at a time. Table A.4 lists all variants.

8.3.2 User Studies to Inform Design

Considering the sensitive nature of our adolescent target group and educational
setting, we meticulously designed the learner control mechanism, what-if
explanation, and wise feedback. Adopting an iterative design approach, we
engaged involved adolescents, teachers, and pedagogical experts. Concretely,
we conducted two think-aloud studies with adolescents and two focus groups
with teachers and pedagogical experts. Section 8.4 provides full details about
the procedure and takeaways.

During our think-aloud studies, participants were asked to complete several
predetermined tasks in a prototype and articulate their actions (Abras et al.,
2004). The studies lasted 15–30 minutes depending on how much feedback
participants gave, and participants were rewarded with a €15 voucher. We
recorded the conversation for later analysis after written informed consent.

In our focus groups (Hennink, 2014), we presented our prototypical explanation
interfaces to participants and asked them to discuss how they could be used on
an e-learning platform, whether they met students’ and teachers’ needs, and
how they may affect motivation, trust, and metacognition. The focus groups
lasted 2 hours and were recorded after written informed consent.
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8.3.3 In-Class Experiment

We conducted a randomised controlled experiment in a real class setting with four
groups, which each saw a different version of the control interface we designed.
Specifically, in none, participants did not have any control over the exercises’
difficulty; in control, participants could steer exercises’ difficulty with the
slider shown in the upper half of Figure 8.1 2 a; in what-if, participants
additionally saw the what-if explanation underneath the slider as shown in
Figure 8.1 2 a; and in feedback, participants additionally saw the wise
feedback underneath the slider as shown in Figure 8.1 2 b. At the start of
the experiment, participants reported self-estimated overall maths level and
motivation for learning (Pelletier et al., 2013) in a pre-study questionnaire.
Then, they could practice freely chosen topics for 15-30 minutes, following the
flow in Figure 8.1. In the background, we logged all interactions with the slider,
changes in Elo ratings, and performance. Finally, participants reported their
trust in the platform, metacognition, enjoyment, and motivation in a post-study
questionnaire.

Participant Recruitment Collaborating with a school in Belgium (Flanders)
in the scope of a larger context on AI for education, we invited adolescents
from grades 7 and 8 for participation. All interested students gave informed
consent and required parental consent. Eventually, 170 students participated
in the study. To ensure participants had sufficient experience with the control
screen, we excluded from analysis those who saw the control screen less than 3
times or attempted less than 9 exercises; leaving 163 students. Furthermore,
for the pre-study questionnaire, we only analysed the data of 159 participants
who completed it attentively, i.e., needing more than 3s per question on average
and having at least two different answers. We took similar measures for the
post-study questionnaire, ending up with data of 120 students for trust, 107 for
metacognition, and 101 for enjoyment and motivation.

Data Analysis To ensure our measurements are valid, we first tested internal
validity (ω reliability (Dunn et al., 2014) with bias-corrected and accelerated
bootstrap, 1000 replications). Then, we conducted exploratory factor analyses
and refactored measured concepts when necessary (Knijnenburg and Willemsen,
2015); checking for multinormality with Mardia’s test, factorability with the
Kaiser-Meyer-Oblin test and Barlett’s test of sphericity, number of factors
with scree plots and parallel analysis. This process ultimately allowed us to
test our hypotheses regarding the measured constructs, which are summarised
in Table 8.1. We used one-sided t-tests; normality of the measurements was
reasonable given the sample size and the central limit theorem.



METHODS AND MATERIALS 211

Table 8.1: Overview of our hypotheses H1–H7 with corresponding measurement
instruments and findings.

Hypotheses Measurement Instruments Result

Hypotheses regarding human perceptions
H1. Motivation: Shared control
over exercise selection leads to higher
motivation. What-if explanations and
wise feedback further increase it.

Self-constructed scale. Not confirmed
(all p > 0.29).

H2. Trust: Shared control over exercise
selection alone does not increase trust in
the platform, but together with what-if
explanations and wise feedback it does.

Existing scales (Ooge et al., 2022a;
Wang and Benbasat, 2005) measure
one-dimensional trust, competence,
benevolence, and intention to
return.

Not confirmed
(all p > 0.07).

H3. Metacognition: Shared control
over exercise selection leads to higher
metacognition. What-if explanations
and wise feedback further increase it.

Self-constructed scale based on
(Kay and Kummerfeld, 2019), time
spent on control screen.

Not confirmed
based on scale
(all p > 0.25);
partly
confirmed
for what-if
based on time.

H4. Enjoyment: Shared control over
exercise selection alone does not increase
enjoyment, but together with what-if
explanations and wise feedback it does.

Existing scale for endurability
(O’Brien and Toms, 2010).

Not confirmed
(all p > 0.04
before
correction
for multiple
testing).

H5. Learning performance: Shared
control over exercises selection leads to
higher learning performance. What-if
explanations and wise feedback do not
further increase it.

Answers to exercises and Elo
rankings of exercises. For more
accurate estimates, we corrected
performance as described in Ap-
pendix A.4.

Partly
confirmed
(all p > 0.42).

Hypotheses regarding interactions with the control slider
H6. What-if explanations and wise
feedback lead to more exploration, i.e.,
slider interactions.

Proportion of slider interactions. Confirmed

H7. What-if explanations and wise
feedback lead to higher chosen slider
values.

Chosen slider values. Confirmed
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8.4 Design Process

This section describes our extensive user-centred design process for the interfaces
in Figure 8.1, which contain a slider for learner control, a visual what-if
explanation, and wise feedback. We present four major iterations together
with takeaways relevant for future research on learner control mechanisms for
e-learning platforms.

8.4.1 Prototype 1 and Informal Feedback

Based on our experience with recommender systems in education (Ooge et al.,
2023, 2022a) and the general call for XAI in education (Conati et al., 2018;
Khosravi et al., 2022), we set out to study which visual explanations can help
justify recommended series of exercises for adolescents. Figure 8.2 shows our
initial Figma prototype. The left side presents a series of recommended exercises
together with details about their topic and difficulty, and previous attempts.
The right side contains three parts: (1) a split bar chart showing the importance
of the learner’s current mastery level with respect to the recommended exercises;
(2) a global explanation about the recommended exercises in terms of their
similarity to other exercises; and (3) a what-if explanation that showed the
change in mastery for all topics in case the learner solved the series correctly.

During meetings of a larger project on AI for education, we collected informal
feedback from several high school teachers and edtech industrials on our
prototype and elicited needs regarding e-learning platforms. Overall, teachers
appreciated the idea of personalising the learning process with an e-learning
platform, corresponding to previous research (Ooge et al., 2023). However, they
found our three explanation types overwhelming and suggested an emphasis on
explanations to boost students’ motivation.

8.4.2 Prototype 2 and Think-Aloud Studies

Based on the teachers’ feedback, we decided to simplify our design. Figure 8.3
shows how we particularly reorganised the right side. First, we merged our initial
first two explanations into one overall why explanation for the recommendation:
the topics of recommended exercises were depicted as a tree. Each branch
showed all exercises of the corresponding topic scattered over the branch in
rising difficulty, and also the learner’s mastery level for that topic. Highlights
showed how the recommended exercises were those laying closest to the learner’s
mastery, and hovering also revealed learners’ previous attempts. Furthermore,
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Figure 8.2: Screenshots of our first prototype. Left: a series of 5 recommended
exercises. Right: justification for the recommendations with feature importance,
a global explanation, and a what-if explanation.

we made the what-if explanation more prominent and visualised the change in
mastery level on an axis identical to the tree branches.

We then conducted think-aloud studies with 6 students (P1 and P2 in 8th
grade, P3 in 9th grade, P4 and P5 in 10th grade, and P6 in 11th grade) to
test our prototype’s overall usability, verify whether teenagers could understand
our explanations, and elicit needs regarding personalised learning through an e-
learning platform. Table 8.2 summarises our findings. Overall, participants did
not experience major usability issues apart from the why explanation. The many
dots in that visual explanation were rather intimidating and most participants
needed some time or oral clarification to grasp their meaning. This taught us
three important lessons.

Takeaways about design On a design level, we learnt that we could further
clarify the descriptions above the visualisations by merging the legend in, similar
to how we styled the mastery label consistently with the visualisation. Still,
many participants simply did not read the description before we asked them to.
As suggested by P6, a brief tutorial or animation explaining the visualisation
could be a better alternative or useful addition. More importantly, even though
only P1 mentioned it explicitly, we found that participants did not really link
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Figure 8.3: Screenshots of our second prototype with redesigned why and
what-if explanations. Hovering scatter plots adds extra vertical jitter, and
clicking an info button in the mastery level labels reveals previous performance.

the explanations to the recommendations. This shows that explanations should
be well-integrated with whatever they are explaining, and that simply presenting
them together is no guarantee for success.

Takeaways about XAI On an XAI level, we learnt that our explanations
could only slightly increase participants’ understanding of the recommendation
algorithm. Moreover, participants typically created a particular mental model
by combining elements in the interface and prior expectations. For example, P1
wrongfully believed the dots in the why explanation represented other learners as
they were shown together with their own mastery level, and therefore assumed
the recommender applied collaborative filtering. This illustrates that cognitively
overdemanding explanations might lead to mental models that seem sensible
but are wrong. Interestingly, P4 and P6 mentioned they found the what-if
explanation motivating as it gave them a kind of goal to work towards.

Takeaways about control Finally, even though participants saw many
advantages in personalised recommendations, they also indicated that they
wanted to keep some degree of control over which exercises to solve. For
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example, P1 and P5 proposed hand-picking exercises from a list or table which
indicates each exercise’s difficulty level, and P5 even suggested to re-purpose
the scatter plot in the why explanation as a way to select exercises.

8.4.3 Prototype 2 and Focus Groups

We also wanted to capture how educational stakeholders other than students
received our prototype in Figure 8.3. Therefore, we conducted two focus groups
G1 and G2 with respectively 4 (P1–P4) and 3 (P5–P7) pedagogical experts
whose details are listed in Table 8.3. Table 8.4 summarises the themes that
arose during the discussions. Overall, participants raised comments about the
explanations which largely aligned with those of P1–P6 in the think-alouds, but
also gave interesting insights into how teachers could benefit from explanations,
how they could be improved according to pedagogical practices, and how
our recommendation-driven e-learning platform could further meet needs in
education. The following paragraphs sum up the main lessons for students and
teachers, respectively.

Table 8.4: Findings of our two focus groups with pedagogical experts, discussing
the prototype in Figure 8.3. The second column indicates in which focus groups
the themes arose. Ticked comments have been addressed or supported in the
next iteration, described in Section 8.4.4

Comment Group

Why explanation for students
Could be superfluous if students need to solve the exercises anyway G1, G2 ✓
Visually clean, but too complex and too detailed for students G1, G2 ✓
Showing all exercises could give students the impression they need to solve them
all

G1 ✓

Only show exercises that fit students’ mastery level or are useful to reach a goal
(e.g., unlock levels with exercises)

G1 ✓

Use different colours for red and green as students tend to interpret them as a
personal judgement

G1

Could be useful for students to choose exercises themselves G2

Why explanation for teachers
Useful for teachers to monitor students G1, G2
Suitable for teachers to understand how and why exercises are being recommended G1
Useful for teachers to see distribution of exercises’ difficulties and potentially
identify problematic exercises

G1

Could support dialogue between teachers and parents (e.g., explain how platform
diversifies, show students’ track record)

G1

Construct learning paths by indicating at which mastery level students can switch
to another topic

G2

Continued on next page
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Table 8.4 – Continued from previous page

Comment Group

What-if explanation
Highlight progress even when level stays identical G1, G2 ✓
To increase motivation, visualise goals and expectations (e.g., thresholds between
mastery levels, path with steps to a goal)

G1, G2 ✓

Most interesting part because it shows potential progress G1 ✓

General comments about explanations
Use more supportive words for “(in)sufficient” G1 ✓
Relation between recommendations and explanations is unclear G2 ✓
Orient axes vertically to better represent the idea of “climbing up” G2 ✓
Both explanations are linked: harder exercises correspond to a higher mastery
level

G2 ✓

Good to avoid that students are brainlessly solving exercises; explanations can
persuade them to practice attentively

G2 ✓

Unclear whether students will really look at the explanations G2
Potentially only show explanations on demand G2

Recommender system and control
Allow students to choose non-recommended exercises if they assume their mastery
level differs from the system’s estimate

G1 ✓

Students might lack sufficient self-direction to choose the right topics and exercises G2
Restrict to practising one topic at a time G2 ✓
Recommend rehearsing theory when students’ mastery level is too low or when
they make X similar mistakes

G2

Teachers could assign initial difficulties to exercises and mastery levels to students.
Alternatively, let students do it themselves (i.e., foster meta-cognition) or
automatically (e.g., based on previous learning data or a pre-test)

G2

General comments about the platform
Beware to not only make strong students stronger; also support less motivated,
less literate, and cognitively weaker students

G1

Let students contextualise their performance with analytics (e.g., performance,
number of solved exercises, time spent, etc.)

G1

Analytics can foster dialogue with parents (e.g., discuss when students perform
best), even though this can evoke confrontations

G1

Potentially let students compare themselves with others G1
Context can strongly influence students’ performance (e.g., home vs classroom) G1
Tailor visual design to a younger audience without making it childish (e.g., use
an avatar and more graphics)

G2 ✓

The platform should inform students when they achieved a goal and not force
them to continue practicing mastered topics

G2

The platform should update exercises’ difficulty in a data-driven way G2 ✓
Spaced practice based on mastery level or student motivation; students could
themselves decide when to switch topics

G2

Takeaways for students Participants in G2 appreciated that the explanations
could stimulate metacognition, but at the same time questioned whether students
would actually pay attention to them. In line with what P1–P6 reported in
the think-alouds, participants deemed the why explanation too complex for
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Table 8.2: Main findings of our think-aloud studies with the prototype in
Figure 8.3, ordered by overall theme and frequency. The second column shows
which participants raised the comment. Ticked comments have been addressed
or supported in the next iteration, described in Section 8.4.4.

Comment Participants

Recommended series
Understands which exercises are being recommended P1, P2, P3, P4, P5, P6 ✓
Expects to see own mastery level or confuses it with exercise
difficulty

P1, P2 ✓

Why explanation
Does not (immediately) understand the scatter plot (e.g.,
position and colouring of the dots are unclear)

P1, P2, P3, P4, P5, P6 ✓

Own mastery level for all topics is clear (e.g., because of the
consistent lay-out in the text above the visualisation)

P1, P2, P3, P4, P5, P6 ✓

Does not find (or would not have found) extra clarification on
how mastery level was determined

P1, P2, P3, P5, P6

Legend clarifies that dots represent exercises P2, P3, P4, P5
Did not read text above the visualisation (e.g., because it was
too small or too long)

P1, P4 ✓

Understanding why an exercise is recommended increases eager
to solve it

P1

What-if explanation
Arrow between the labels clarifies the progress P2, P3, P5, P6
Seeing progress is motivating P4, P6 ✓
Translation of the label clarifies the progress P1 ✓

Recommender system
General understanding that recommendations are based on
previous performance

P2, P3, P5, P6

General understanding that recommendations are based on
mastery level

P3, P4, P6 ✓

Expects test to calibrate initial mastery P1, P5
Still wants to choose exercises (of a specific difficulty level)
themselves

P1, P5 ✓

Believes recommendations are influenced by other learners’
answers

P1

Expects mainly recommendations for topics with low mastery
level

P3

General comments about the platform
Personalisation is useful (e.g., to work more independently, to
know own strengths and weaknesses)

P2, P3, P5 ✓

Wants to re-make exercises (e.g., by clicking dots in the why
explanation)

P2, P3, P6 ✓

Would not always look at explanations, but wants them on-
demand

P4

Would especially look at explanations when making many
mistakes

P6

Relation between recommendations and explanations is unclear P1 ✓
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Table 8.3: Details of the educational experts who participated in our focus
groups.

ID Gender and Background

P1 F – deputy director at high school, educational author, implemented ICT tools in college
education

P2 F – college researcher, didactic support person for digital learning, former elementary
school teacher

P3 F – scientific employee on educational technologies and partnering with industry,
didactician, former educational author

P4 M – educational support person and ICT coordinator at a college, former secondary
school teacher

P5 M – high school teacher of languages using ICT in class, pedagogical worker for special
care education, educational author

P6 M – manager at different educational publishers, former high school teacher of classical
languages and history, pedagogue

P7 M – product owner at educational publisher, former educational author, former primary
school teacher

students and were afraid the many dots might lead students to the false belief
that they would have to solve all exercises instead of just a subset. Interestingly,
participants in both G1 and G2 hesitated whether students need to understand
the rationale behind recommendations (why) as they need to practice anyway.
P6, for example, said: “Students just want to know which exercises they should
solve. Then solve them, period.” Instead, all participants agreed that motivating
students should be the main objective in the context of practicing and therefore
found it more important to visualise the impact of correctly solving exercises
(what-if ). For example, P4 stated: “I don’t know what the added value is of
representing all exercises. I think it’s more interesting for [students] to see: if
I do this, than that will be the effect on my level.” In addition, P5 put it as
follows: “We must avoid students just brainlessly completing exercises without
understanding why they are making them. Not why the system proposed them,
but ‘what’s in it for me’, why should I make those exercises.” This relates
to another prominent theme: students should mainly see their progress and
how they can achieve specific goals. P7, for example, phrased it as follows:
“Students should actually only know why they have a certain mastery level, what
steps they should take to get to another level, and which options they have [to
get there].” In sum, participants found the what-if explanation more relevant
than the why explanation for students.

P4 furthermore alluded to giving students more control over exercises’ difficulty
instead of fully depending on recommendations: “Can students click on a
non-recommended exercise [in the why explanation] to try it anyway? Maybe
they just guessed five times and therefore have an insufficient level, while they
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actually do master [the content]. And maybe then they’ll say like: ‘okay, I’ll do
my best now’.” Interestingly, P5 also suggested this interaction in the think-
alouds. Participants in G2, however, cautioned that generalising such control
to freely choosing topics and individual exercises might be counterproductive:
they questioned whether young students have sufficient self-direction to make
such pedagogically important decisions without guidance.

Takeaways for teachers Whereas participants did not deem the why
explanations suitable for students, they saw lots of potential in them for teachers
for at least four reasons. First, it could educate teachers about how exercises
are being recommended: “AI-driven decision-making is still very unfamiliar to
many teachers, and this really makes it visual” (P3). Second, teachers could
use visualisations similar to our why explanation to monitor both students’
progress and exercises’ difficulties. The former allows teachers to decide which
students need personal guidance; the latter supports identifying problematic
exercises. Third, the visual why explanation could support teachers when talking
to parents: “[to tackle questions such as] ‘Why does my child need to solve
these exercises?’, this allows to perfectly explain that [the exercise series] are
put together à la tête du client. [...] It brings nuance to the dialogue, which can
sometimes be hard” (P3). Fourth, to stimulate spaced practice, P5 proposed
an original idea: teachers could manually draw learning paths between different
axes in the visualisation, indicating at which mastery level students can switch
to another topic. Alternatively, the visualisation could depict automatically
generated learning paths, which teachers could overrule if necessary.

Discussing the broader scope of educational recommender systems, participants
in G2 envisioned that teachers are ideally positioned to determine students’
initial mastery level. The same holds for exercises’ initial difficulty levels when
the system iteratively estimates difficulties. Moreover, participants in G1 noted
that teachers can use learning analytics collected on e-learning platforms to
foster dialogue with parents; provided that they are being trained to interpret
such analytics. Together with participants’ remarks on how teachers could use
our visual why explanation, these comments underline that teachers remain
important in the context of recommendation-driven e-learning.

8.4.4 Prototype 3 and Think-Aloud Studies

Based on the rich feedback from students and pedagogical experts, we iterated
a third time over our prototype, addressing or supporting the ticked comments
in Tables 8.2 and 8.4. The resulting interfaces in Figure 8.4 show several drastic
changes regarding the graphical design and functionalities. Most noticeably, we
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Figure 8.4: Screenshots of our third prototype. Based on the feedback in our
think-aloud studies and focus groups, we dropped the why explanation, added
a slider to control the difficulty level of recommended exercise series, redesigned
the what-if explanation, and added wise feedback. Both the what-if explanation
and the wise feedback interactively updated based on the chosen slider value.

decided to drop the why explanation: while we could have further improved its
visual design to resolve the issues adolescents experienced, our studies showed
that the explanation simply did not fulfill their primary need of motivation.
Thus, we focused on refining the what-if explanation instead. Inspired by the
alludations to a control mechanism, we also added a slider with which students
can steer the difficulty level of recommended exercise series. In addition, given
the educational experts’ stress on motivation, we added motivational sentences
inspired by wise feedback.

To assess the usability of our new prototype, we conducted another round
of think-aloud studies with 6 middle school students (P1–P6, all 7th grade).
During the studies, we noticed that the participants were not very fluent
in Dutch and read slowly. Our findings summarised in Table 8.5 should be
interpreted accordingly. Overall, participants did not face major usability issues:
the functioning of the control mechanism and the overall flow of selecting
and solving exercises were clear. Yet, observing participants’ interactions and
registering their remarks gave us some interesting insights.
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Takeaways about the control mechanism All participants found it very
intuitive to control exercises’ difficulty with a slider. P4, for example, put this
explicitly into words: “[I] choose harder [...] because the exercises I had now
were a little easy.” Furthermore, P2 explained how the slider made them think
more about their level: “[on the interface without slider] it seems you just have
to read the text and start right away and on [the interface with slider] you get
to choose hard and so on and then you can start.” This demonstrates how
the control mechanism encouraged participants to reflect upon which difficulty
levels they could handle. For P6, the control mechanism was even the most
important aspect in the interfaces, underlining what others seemed to concur
with: adolescents highly appreciate learner control.

Takeaways about the what-if explanation Five participants identified the
interface with the what-if explanation as their favourite, mainly because it
showed them their progress, was not fully textual, and was colourful. For
example, P4 said: “I can see where I am with my level, and if I solve another
exercise, I can also see if I get to another level, or stay at the same. [...] If I’m
too low, this can show I need to work my way up. [...] I like that.” Related to
this is that not everyone understood the levels’ names, but the coloured icons
accompanying them clarified their meaning. This shows the potential advantage
of visualisations and supportive visual elements over mere text for learners who
are linguistically not so advanced.

Takeaways about the wise feedback Four participants confirmed they found
the wise feedback motivating. P6 stated that the wise feedback stimulated
them to indicate a higher difficulty level: “I wanted to choose easier, but then I
saw [the wise feedback], so I made it a little harder. [I kind of like it] because
otherwise you always choose easier.” Yet, participants did not always blindly
follow the advice: for example, at some point, P4 read the wise feedback
but deliberately chose a lower difficulty to avoid more wrong answers. In
addition, P2 and P3 admitted they found the text rather long and P4 raised
the question whether the feedback should promote harder exercises after an
incorrect answer. These findings show how wise feedback can indeed persuade
adolescents to reasonably push their boundaries if they are up for it. At the
same time, however, it is unclear whether adolescents would always read the
textual feedback and whether they would prefer feedback that is better tailored
to their historical performance.
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Table 8.5: Main findings of our think-aloud studies with the prototype in
Figure 8.4, ordered by overall theme and frequency. The second column shows
which participants raised the comment. Ticked comments have been addressed
or supported in the next iteration, described in Section 8.4.5.

Comment Participants

Control mechanism
Meaning and functioning of the slider is immediately clear P1, P2, P3, P4, P5, P6 ✓
Not reading or only glancing at text above the slider P1, P2, P3, P4, P5, P6 ✓
Slider supports reflecting on own mastery level P2, P3, P4, P5, P6 ✓
Slider could be more finegrained P6 ✓

What-if explanation
Favourite interface (colours, balanced text and visuals, see progress) P1, P2, P3, P4, P5 ✓
The words ‘expert’, ‘competent’ and ‘proficient’ are unclear P1, P2, P3 ✓
Colours clarify the ordering of levels P2, P5 ✓
Precise meaning of levels is (partly) unclear P2, P5 ✓

Wise feedback
Wise feedback is motivating and supporting P1, P2, P5, P6 ✓
Wise feedback is too long P2, P3
Do not promote harder exercises after errors P4

8.4.5 Final Prototype

After the second think-aloud studies, we streamlined our interfaces’ graphic
design to address the collected remarks. Figure 8.1 depicts our final protype.
One important change was to alter the overall colour palette from green to blue
to avoid confusion with the green colour of mastery levels 4 (Proficient) and
5 (Expert). To reduce preference bias towards the interface with the what-if
explanation because of its colours, we also turned the platform’s background
more colourful and visually interesting. Another important change was adding
the one-screen tutorial in Figure 8.1 1 , which introduces the platform’s mastery
levels inspired by the five-stage Dreyfus model (Dreyfus, 2004).

8.5 Results of In-Class Experiment

During the experiment, participants solved 25.2 exercises (SD = 11.9) on
average, which corresponds to over 8 series of three exercises. Participants in
control, what-if, and feedback changed the default slider value on the
control screen 776 out of 1507 times (51%), showing that they were actively
using the option to steer exercises’ difficulty.
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8.5.1 Validation of Measurements

First, we checked the validity of our measurements.

Learning motivation. Since amotivation had bad internal validity (ω = 0.54,
CI = [0.37, 0.66]) and an exploratory factor analysis with 5 factors yielded much
cross-loading and items loading on factors different from the theorised ones, we
decided to refactor (KMO = 0.88, χ2 = 965, p < 0.001). Scree plots and parallel
analysis suggested two factors, and after pruning three questions, we obtained a
reasonable factor structure and internal validity for what we refer to as intrinsic
motivation and extrinsic motivation, similar to (Van Houdt et al., 2020) (see
Table A.3). Yet, this factoring only explained 44% of the variance. Overall,
participants scored higher on extrinsic motivation (mean = 4.45, SD = 1.09)
than intrinsic motivation (mean = 3.87, SD = 1.32).

Trust. Our data showed good internal validity scores for competence (ω = 0.74,
[0.60, 0.81]), benevolence (ω = 0.82, [0.73, 0.88]), and intention to return (ω =
0.84, [0.74, 0.90]). However, to reduce cross-loading and low factor loadings, we
refactored until 65% of the variance was explained and the internal validity of
competence improved.

Metacognition. We did not have to refactor this construct as internal validity
was high and the factor structure seemed robust, explaining 57% of the variance.

Enjoyment. Since internal validity was on the low side (ω = 0.70, CI =
[0.59, 0.95]) and two items had low loadings, we pruned those items and ended
up explaining 56% of the variance with the remaining three items.

Motivation. This construct had a good internal validity (ω = 0.80, CI =
[0.73, 0.85]), but some factor loadings were low. We pruned items until we
explained 61% of the variance.

Performance. To assess performance, we could not solely rely on participants’
Elo ratings, because their ratings were not converged yet due to the short
duration of our experiment. Therefore, we measured performance in terms of
the proportion of correct answers and corrected those values by the estimated
difficulty of exercises. Details can be found in Appendix A.4. Figure 8.5 shows
that overall performance across the four experimental groups follows a normal
distribution, and our correction of the performance scores mainly increased
scores in the first two quantiles.
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Figure 8.5: Cumulative line graph of the original and corrected performance
scores. The correction mainly increased low scores.

8.5.2 Testing Hypotheses About Perceptions

Figure 8.6 shows how participants filled out the post-study questionnaire and
how they performed. Visually, average scored did not vary much. Statistical
tests supported this: Table 8.1 shows that most of our hypothesised effects could
not be confirmed. For one, our subhypothesis in H5 that what-if explanations
and wise feedback did not increase performance held. Furthermore, Figure 8.7
shows that participants in what-if spent significantly more time on the slider
screen than other groups (for each group, outliers outside the 2σ-interval were
removed). This could mean participants in what-if were more cognitively
engaged with the control screen.

8.5.3 Testing Hypotheses About Interactions

After removing outliers outside the 3σ-interval per group, one-sided t-tests
showed that participants in what-if and feedback interacted with the slider
on the control screen significantly more often than participants in control
(p = 0.02 and p = 0.01, respectively; see Figure 8.7). Thus, the what-if
explanation and wise feedback stimulated participants to explore different slider
values more often. This confirms H6.

The bar charts in Figure 8.8 show that participants especially explored the
extreme values (i.e., ‘Very easy’ and ‘Very hard’) and values slightly higher
than the default value (i.e., between ‘Normal’ and ‘Hard’). Furthermore, the
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Figure 8.6: Scatter plots of the responses to the questionnaire in Table A.3
for each research group, where the bar indicates the group’s average. For visual
clarity, dots are slightly jittered horizontally and vertically.
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Figure 8.7: Left: time participants spent in the control screen; each dot is the
average time of a participant. Right: number of slider changes divided by the
number of times participants saw the control screen.

what-if explanation and wise feedback seemed to reinforce this effect compared
to participant who only saw the slider. Looking at the eventually chosen
slider values, we see that the vast majority stuck to the difficulty proposed by
default (i.e., ‘Normal’). In what-if, participants chose less often for the lowest
difficulty level, and more often for the middle or highest difficulty, compared
to control. In feedback there was an even more outspoken shift towards
higher difficulty levels, doubling the number of times the highest difficulty level
was chosen, compared to control. Statistical tests showed that these increases
were significant in both what-if (p = 0.02) and feedback (p = 10−6), thus
confirming H7.

8.5.4 Correlation Analysis

Corrected performance did not correlate with any of the measured constructs,
but Figure 8.9 shows several insights about the correlations between all
other constructs. First, there was no strong correlation between any of the
constructs and participant’s intrinsic or extrinsic motivation for learning. Yet,
it is interesting that metacognition correlated twice as high with intrinsic
motivation compared to extrinsic motivation. This suggests that students
who are intrinsically motivated to learn are also more inclined to have a higher
metacognition. Furthermore, enjoyment, motivation, and intention to return had
the highest inter-correlations, which plausibly suggests that students who found
the e-learning platform motivating and engaging are more inclined to return.
Finally, competence correlated quite strongly with the other constructs, which
for example suggests that participants reported to be more eager to return when
they perceived the recommendation system underlying the e-learning platform
as more competent.
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Figure 8.8: Left: Distribution of the explored slider values, together with
explicit differences between what-if and control, and what-if and control,
respectively. Right: similar charts for chosen slider values.

8.6 Discussion

This section discusses the results from our user-centred design process and
in-class experiment to answer our research questions. It first proposes some
design implications for visual explanations and control mechanisms on e-learning
platforms, and then interprets our results concerning the impact of our designs
on students’ motivation, metacognition, enjoyment, performance, and trust in
the platform.

8.6.1 Why Explanations not for Adolescents, but for Teachers?

Our user studies suggested that why explanations do not fill pressing needs of
adolescents in the context of an e-learning platform that recommends exercises.
The adolescents we spoke did not seem to strongly require understanding
recommendations and only one person mentioned that such understanding might
increase eagerness to solve them. As alluded to by teachers and pedagogical
experts, this lacking need for explainability might be due to the traditional
school system that simply imposes tasks on young students. Furthermore, our
proposed why explanation sometimes reinforced an inaccurate mental model
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Figure 8.9: Relations between all measured constructs. Lower triangle: scatter
plots with regression lines. Diagonal: density plots of constructs. Upper triangle:
correlations coloured by value (*p < 0.01, **p < 0.001).
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because its visualisation was not clear at first glance. This could have been due
to low visual literacy or heuristic thinking: to make faster decisions, people
resort to intuitive and low-effort thinking, but this can make AI novices more
prone to misunderstanding explanations (Wang et al., 2019a). Preventing
misunderstandings with textual annotations, as suggested by Szymanski et al.
(2021), brought no immediate solace as we found those to be overlooked by
adolescents, potentially because of low reading proficiency.

Overall, even though our why explanation seemed to become clearer once
adolescents paid closer attention and became more familiar with the visualisation,
we did not further evaluate it as it did not fulfil learners’ needs. For contexts
where why explanations become more prominent, we recommend to follow a
visual approach as the graphics and colours drew adolescents’ attentions, and to
keep textual annotations concise and linguistically simple. We also highlight the
benefit that why explanations could have for teachers, both for understanding
and steering the recommendations, as for improving communication with parents.
This fits well within learning analytics (Bodily et al., 2018b).

8.6.2 Fostering Motivation With What-If Explanations and
Wise Feedback

Teachers and pedagogical experts were clearly concerned with motivating
students, which is in line with broader attempts to foster motivation on e-learning
platforms; for example with gamification or support communities (Naidoo, 2020;
Ooge, 2019). Our qualitative studies showed that our what-if explanation could
fulfil this need for motivation: both adolescents and pedagogical experts praised
it for showing the potential positive impact on mastery level as it instilled a
goal to work towards. This resonates with motivation theory on performance-
approach goal orientation, which is learners’ goal to demonstrate and prove
ability (Leondari and Gialamas, 2002).

However, our randomised controlled experiment did not show an increase in
reported motivation for learning for participants who saw what-if explanations.
Surprisingly, the same held for participants who saw wise feedback, which is
specifically designed for increasing motivation through self-efficacy. We see
several possibilities to contextualise these effects. First, motivation was indeed
not affected and our study illustrates how people’s expectations do not always
match with their perceptions afterwards. Second, our what-if explanation
actually did motivate participants to solve exercises, but since our measurement
instrument focused on motivation for overall learning, we missed that effect.
Third, our experiment did not last long enough to instil large motivational
differences.
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8.6.3 Learner Control Is Not a Panacea

While our designs initially only focused on transparency through visual
explanations, it was interesting that both adolescents and teachers raised a need
for control over the recommended exercises. While their suggestions to fill this
need involved manually selecting exercises, we implemented a slider through
which students could manipulate the difficulty of exercise series. This proved to
be an adequate level of control for students. Our in-class experiment revealed
two interesting insights.

First, our experiment did not align with previous research or hypotheses that
adding learner control can lead to more motivation, enjoyment, metacogni-
tion (Ooge et al., 2023), or performance (Long and Aleven, 2016, 2017). Yet,
our results matched with previous findings that merely adding control does not
increase trust in the platform (Ooge et al., 2023).

Second, our logging data of how adolescents interacted with the control slider
showed they typically chose extreme values (‘Very easy’ and ‘Very hard’) or
the central value (‘Normal’). This is rather surprising as adolescents explicitly
asked for more granular control levels during our design evaluations. While it is
interesting to see that both what-if explanations and wise feedback realised the
upwards shift we intended, it seems less desirable if chosen difficulties therefore
‘overshoot’ to levels that may be too high for learners. Thus, future designs
could consider adaptively restricting the allowed steering, or providing more
prominent warnings when chosen difficulty levels do not match with the learner’s
estimated mastery level or track record.

8.6.4 Limitations and Future Work

Our research has several limitations which restrict how well our findings
generalise. First, our study was conducted during a single school period, making
it too brief to detect effects that arise on the longer term. Since especially trust
and motivation are calibrated in the long term (Holliday et al., 2016), our non-
conclusive results might be unsurprising. Second, the 8 classes that participated
in our study differed in how well they focused on the study. While some classes
worked very concentrated, others were more chaotic with interaction between
participants. It is unclear to what degree this may have biased the results,
but it could explain the high variance in almost all self-reported measures.
Third, wise feedback may be more effective in terms of motivation when not
given at the start of every single exercise series and when adapted to the
learners’ track record. We opted against this to make sure participants saw the
feedback sufficiently often during the study, and provided several versions for
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each difficulty level instead. In addition, we based the phrasings of the wise
feedback on the literature (Yeager et al., 2017), but did not consult teachers,
for example. Fourth, we noticed that many participants were not fluent in
Dutch, which might have caused inaccurate measurements and ignoring textual
information in our interfaces. We tried to accommodate this limitation by
rigorously refactoring the measured concepts, but future researchers should be
careful with considering the newly composed scales as ‘validated’. Fifth, we only
included young adolescents in our study, around 11–13 years old. Given the
rapid changes in adolescence, future studies should compare our results with
those of older adolescents.

8.7 Conclusion

While studies on how to design e-learning platforms for adolescents are
abundant, XAI studies on how to design effective explanations and learner
control mechanisms for them are not. During our design process with three
major iterations, involving both adolescents, teachers, and pedagogical experts,
we derived many design lessons regarding these aspects for adolescents. In
particular, we found that why explanations do not necessarily fulfil explainability
needs for young learners, but could be very useful for teachers. Furthermore,
what-if explanations were received well in view of motivation. Our randomised
controlled experiment with 170 adolescents from grades 7 and 8 did not show
strong evidence for increased motivation, trust, metacognition, enjoyment, or
learning performance under shared learner control, whether or not accompanied
by what-if explanations or wise feedback. Yet, the latter two did affect how
adolescents used the control mechanisms, leading to possible future research
paths on how learners best collaborate with AI systems.
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I started contributing to the project that led to this paper in November 2021 and
had a great collaboration with Arno for about a year, in which we conducted the
first four user studies. Sadly, Arno interrupted his PhD before we could roll out
a final evaluation. Maxwell fortunately jumped in to help me and we decided to
go for an ambitious randomised controlled study. This, however, required lots
of implementation work, practical arrangements with the participating school,
and careful tweaks in the research plan. Doing all that in less than a month
time was extremely stressful, especially because the study would be rolled out
on a rather large scale and many teachers had freed up a class period for us.
The night before the study, while frantically trying to finish the implementation,
I had a panic attack. If it weren’t for my partner who had been anxiously
sleeping with one eye open, I would have collapsed. To make matters worse,
I even missed the train to get to the school in the morning. Luckily, Maxwell
took care of the practicalities while I took the next train, and in the end the
final study was a success. It took a huge amount of stress and adrenaline,
but I’m proud we pushed ourselves that month. Afterwards, we joked about
our research adventure and asked Midjourney to illustrate it with the prompts
underneath. In case you’re wondering, especially the image in the upper left
seems a pretty accurate depiction of what I must have looked like.

A man driving his bike like crazy in the middle of the night. He looks very tired
and his hair is a mess. He is late for the train, which he sees leaving in the
distance. The man is panicking.

Two researchers are working together. They are having the best time of their
life, they are smiling. There is a rainbow in the sky, the sun is shining. There
are sparkles everywhere.

Songs on repeat:

• Démons (live orchestral) by Angèle and Damso
• Water Water by Empress Of
• All Night by Maceo Plex, and Oscar and the Wolf
• Hold On by En Vogue
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January 2023 ushered in a month-long non-stop working rush, while the end of
my PhD hung above my head like the sword of Damocles. While I was trying to
analyse data collected during the final experiment, I travelled to Australasia for
a research visit and the IUI 2023 conference (see Page 191), Paris for a seminar
in which Katrien and I presented our work, and Hamburg for the CHI 2023
conference. In the meantime, I was mentoring the thesis of master’s students,
teaching, applying for travel and postdoc funding, arranging another research
stay (see later), applying for a postdoc and faculty position, contributing to
four full papers which had to be submitted, reviewing a bunch of papers for
conferences, contributing to new research with colleagues, starting my PhD
text, and much more.
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The Panthéon in Paris – April 2023



End of May 2023, I travelled to Pittsburgh (United States) for a three-month
research stay at Vincent Aleven’s lab in Carnegie Mellon University. It would be
the ultimate ending of my PhD. The “small” maze-like university campus was
spectacular, I made friends for life, and the city was simply enchanting under
the summer heat. Working and living in Pittsburgh was an incredible experience
and I would need a whole chapter to tell you everything about the dozens of
bridges that misled me all the time, the “stop, squash, scrape” lanternflies and
fireflies, the deer and rabbits in the streets, the impressive storms after hot
days, and the incredible people I met. Yet, being away from my partner Yens
and family was also mentally challenging sometimes, especially because I was
under a lot of work pressure. After two months, it was thus a relief to take a
week off in New York with Yens. NYC was a thrill so it was hard to capture it
in a single photograph. I selected this one because it shows a glimpse of the
many different architectural styles, the green natural elements, the typical large
windows in skyscrapers, and the ubiquitous art.
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MoMA museum in New York – July 2023



In terms of work, my time in Pittsburgh was a continuation of the multi-tasking
marathon I had been running for months. Besides conducting new research
funded by the Research Foundation Flanders (FWO), I finally finished the
analysis for this paper and wrote the whole text together with the rest of
the previously unpublished parts in this thesis. Even though it took many
nights with little to no sleep, it felt really good to finish the project I started
contributing to over 2.5 years ago. The bench in the picture shows the place
where the final parts came together. Looking at the Cathedral of Learning in
the distance and the deer and squirrels around me from time to time really
helped me get over the fear of not finishing; or worse, finishing imperfectly.

Songs on repeat:

• Jon Batiste Interlude by Lana Del Rey
• All Is Full Of Love by Björk
• Deep end by Lykke Li
• Don’t Delete The Kisses by Wolf Alice
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Schenley Park in Pittsburgh – August 2023
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Chapter 9

Research Contributions and
Future Directions

This final chapter sums up all research contributions of this thesis and zooms
out to contextualise these contributions in relation to existing research and
provide future research directions.

9.1 Research Contributions

Our research contributes to multiple fields, including human-centred explainable
AI, interactive information visualisation, and application domains such as
healthcare, agrifood, and education. Overall, we showed how AI explainability
can be established through visual analytics (Part I), visualisation-supported
justification (Part II), and visualisation-supported control (Part III). We did
this by reviewing the existing literature, developing new visualisation-supported
explanations and control mechanisms in close collaboration with real end-users
of AI systems, and conducting user studies to better understand how our new
explainability methods affect people’s perceptions regarding AI systems.

Visual Explanations Tailored to People and Contexts

RQ1 asked how visual explanations tailored to a target audience and application
domain can make AI models more transparent. We tackled this question
by studying the existing literature and designing several visual explanations,
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Figure 9.1: Summary of our research contributions concerning visualisation-
based explanations tailored to adults or adolescents in healthcare, agrifood, and
education. (Credits: people by flaticon.com.)

as shown in Figure 9.1. For the latter, we tailored visualisations towards
both domain experts and AI novices in agriculture, healthcare, and education.
Moreover, besides targeting adults as most XAI research does, we also worked
with adolescents.

In Chapter 4, we systematically reviewed the existing literature on
visual analytics, restricting ourselves to healthcare (see Figure 9.1a). We found
that visual analytics can explain advanced algorithms through visualising their
outcomes, interacting with these visualisations, shepherding (i.e., controlling)
the algorithmic process to show algorithms’ behaviour under different settings,
and directly explaining the algorithm with visualisations. These methods are
not strictly distinct; for example, interacting with visualised outcomes can
be a form of control, and visualisations can be a suitable format to display
algorithm-centred explanations such as feature importance. In other words,

https://www.flaticon.com/packs/avatar-17
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there is a fine line between getting insights in the inner logic of algorithms and
their outcomes. Regarding the target audience, we found that the vast majority
of current visual analytics systems in healthcare target healthcare professionals
(i.e., domain experts). Patients are also increasingly involved in health, but
since they are typically AI novices and unfamiliar with data analysis, highly
exploratory and information-heavy visual analytics interfaces are likely too
complex for them. Thus, our review invites researchers to develop explainability
solutions for AI novices in a human-centred way, drawing inspiration from visual
analytics for domain experts.

Next, we designed and implemented five visualisation-supported
solutions for explainability. Our first solution in Chapter 5 consisted
of a simple visual analytics system for agrifood, which showed product
price evolutions and corresponding price predictions (see Figure 9.1b). We
operationalised explainability of the prediction model with three functionalities:
comparing raw and prediction data for different countries, seeing the model’s
past performance, and seeing uncertainty in the prediction model. Furthermore,
users could enable or disable visual components to focus on the information
and insights they needed. Our research underlined the importance of tailoring
visual analytics systems towards the application context, users’ experience
with predictive modelling, and tasks. Our second solution, briefly presented on
Page 159, supports healthcare professionals in the context of monitoring patients’
risk of diabetes onset (see Figure 9.1c). Risk predictions are visually explained
with data-centric, feature-importance, and example-based explanations.

Our three other solutions for explainability were targeting adolescents in an
educational context. All these solutions were iteratively designed in close
collaboration with our target group of adolescents, teachers, and other
education stakeholders. In Chapter 6, we justified next recommended exercises
with a textual why-statement and a bar chart of how many attempts other
learners needed to solve the exercise correctly (see Figure 9.1d). As such, we
explained that the recommendation algorithm considered learners’ mastery level
and conducted collaborative filtering. In Chapter 7, a line graph visualised
how the system changed learners’ estimated mastery after solving series and
exerting control over their mastery level (see Figure 9.1e). This allowed for
model inspection. In Chapter 8, finally, we combined control over the difficulty
level of the next recommended exercise series with a what-if explanation that
indicated how solving a series of the chosen difficulty would impact the assessed
mastery level (see Figure 9.1f). Additionally, textual feedback justified whether
chosen difficulty levels were recommended or not. We also designed a why-
explanation, which turned out to be promising for adults to understand the
internal recommendation process. To conclude, it seems appropriate to stress
that our visualisation-supported explanations are the outcome of an intensive
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Figure 9.2: Summary of our research contributions concerning visualisation-
supported control mechanisms. Each item mentions the form of control, whether
outcomes are changed directly or indirectly, and how tightly visualisations are
integrated with underlying algorithms.

user-centred design process and are tailored towards adolescents aged 12–18.
The latter explains why the visualisations are less advanced than the ones
in the first solution, which target adults. Moreover, targeting adolescents
seems an important contribution as this age group is often overlooked in XAI
research, even though they too are frequently exposed to AI algorithms such as
recommendation algorithms on social media.

Combining Control Over AI and Visual Explanations

RQ2 asked how people can control AI models with additional feedback,
supported by interactive visual explanations. We first studied existing control
methods in healthcare in Chapter 4 and then developed two visualisation-
supported control mechanisms for education in Chapters 7 and 8. Figure 9.2
summarises these contributions.

In Chapter 4, our review showed that less than half of current visual
analytics systems in healthcare allows to control underlying algorithms
and very few integrate explanations. On the positive side, visual analytics
systems that facilitate algorithmic control span the full spectrum between
semi-interactive and tight integration (Turkay et al., 2014) of visualisations
and underlying algorithms (see Figure 9.2a). In other words, visual analytics
can be used to directly change algorithmic outcomes by modifying parameters
and altering the processed data. So far, however, there are few examples of
combining control mechanisms with explanations such as feature importance or
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sensitivity analysis. This may be related to our finding that most visual analytics
systems are either backed by classical statistics or clustering algorithms, which
are typically quite interpretable. Thus, our review revealed that the intersection
of control-supporting visual analytics and XAI can be further explored and
adopted in healthcare.

In Chapter 7 and Chapter 8, we presented two new ways to control
automatically personalised content selection in a learning context. Both
control mechanisms were applied for recommender systems based on Elo ratings,
but can be generalised to other AI methods that estimate learners’ mastery
level and the difficulty of learning content.

Our first control mechanism in Chapter 7 allowed learners to steer their learner
model (Brusilovsky, 2023): after finishing an exercise series, learners could lower
or raise their system-assessed mastery level with a slider. As such, they could
indirectly steer the difficulty of subsequently recommended exercise series. The
accompanying visualisation in Figure 9.1e, however, did not support interaction
and was thus not integrated with the recommender system.

Our second control mechanism in Chapter 8 allowed learners to steer the content
retrieval step (Brusilovsky, 2023). Specifically, before starting an exercise series,
a slider gave learners direct control over the difficulty level of the next exercise
series. Moreover, the accompanying visual what-if explanation in Figure 9.1f
was linked to the slider in real time: exploring different slider values immediately
updated the explanation. This interactive aspect meets the call for designing
and evaluating non-static explanations, which is currently most common in XAI
research (Abdul et al., 2018).

Better Understanding Human Perceptions of AI Systems

RQ3 was concerned with how visual explanations and control mechanisms
affect people’s perceptions of AI systems, specifically in terms of appropriate
trust and understanding their outcomes and algorithmic processes. Figure 9.3
summarises the human- and application-grounded experiments (Doshi-Velez
and Kim, 2017) we conducted to answer this research question. Overall, our
experiments contributed to the XAI state-of-the-art both in terms of new
research findings and refined research methods to obtain those findings.

Our human-grounded experiment in Chapter 5 studied the intricate relations
between four human-centred metrics: the usefulness of a visual decision support
system, needs regarding such a system in the context of price prediction for
food products, understanding of the prediction model, and appropriate trust in
the prediction model (see Figure 9.3a). Our analysis of both quantitative
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Figure 9.3: Summary of our research contributions concerning human- and
application-grounded experiments.

and qualitative data suggested that usability, usefulness, and model
understanding can directly and indirectly affect appropriate trust. In
addition, perceptions differ between people with diverging experience
levels in predictive modelling. This adds to the rich literature about how
people perceive uncertainty visualisation for AI algorithms (Demmans Epp and
Bull, 2015; Gutiérrez et al., 2019b; Hullman, 2020; Leffrang and Müller, 2021;
Padilla et al., 2021; Sacha et al., 2016; Zhou et al., 2017) and how they interact
with visual analytics systems (Cui, 2019; Endert et al., 2017; Saraiya et al., 2006;
Savikhin et al., 2011); how these aspects affect their understanding of (Kulesza
et al., 2013) and trust in (Han and Schulz, 2020; Hoff and Bashir, 2015; Holliday
et al., 2016; Kizilcec, 2016; Schlicker et al., 2022) the AI algorithms; and how
this all depends on people’s background such as previous experience with AI
algorithms (Bayer et al., 2022; Dasgupta et al., 2017; Dikmen and Burns, 2022;
Morrison et al., 2023; Nourani et al., 2020; Ooge and Verbert, 2021) and model-
centric aspects such as accuracy (Papenmeier et al., 2022; Yin et al., 2019).
On a methods level, we also contributed by measuring participants’ experience
with predictive regression in a way that goes beyond simple self-reporting:
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we combined self-reported data with participants’ background and jargon use,
which we deem useful indirect indicators for experience.

Our three application-grounded experiments in Chapters 6 to 8 were conducted
as randomised controlled trials on a fully-operational e-learning platform and
in a real class context.

First, our experiment in Chapter 6 (see Figure 9.3b) showed that visual
explanations significantly increased acceptance of recommendations
and initial trust in the e-learning platform. However, initial trust only
changed significantly when measured as an average of trusting beliefs, intention
to return, and perceived transparency; not when measured with a single question.
This suggests that visual explanations may not be the most important
factor for building initial trust, in contrast to, for example, the platform’s
appearance and the learning material’s quality. Finally, on a methods level, we
advanced typical XAI research approaches by using placebo explanations as a
baseline and measuring trust fine-grained as a multidimensional construct.

Second, our experiment in Chapter 7 (see Figure 9.3c) showed that visualising
the impact of exercised control significantly increased initial trust
in the e-learning platform. Since there was no such increase for the control
mechanism alone, the visualisation caused the trust gain. Arguably, this effect
occurred because the visualisation acted as an indirect explanation for the
recommendation algorithm: by repeatedly seeing how the e-learning platform
estimated and modified their mastery level, adolescents might have better
understood why recommendations were suitable for them. Furthermore, having
control over their mastery level seemed to stimulate adolescents’
metacognition: they reflected more upon the underlying recommendation
algorithm and whether exercises were tailored to their personal mastery level.
In sum, our research suggested potential links between control mechanisms,
explanation through visual model inspection, and metacognition.

Third, our experiment in Chapter 8 (see Figure 9.3d) found no strong
evidence that what-if explanations lead to higher initial motivation,
metacognition, enjoyment, learning performance, or trust when
supporting a learner control mechanism. This did not fully align with previous
work or participants’ qualitative feedback during interviews, potentially because
of the short duration of our experiment. However, interestingly, the what-if
explanations stimulated adolescents to choose more difficult exercises,
which shows that they might be a promising technique to encourage learners
who underestimate themselves into choosing exercises that better fit their true
mastery level. Moreover, we found similar results for motivational feedback
inspired by the concept of wise feedback. Studying these aspects paves the way
for more research on how XAI can contribute to metacognition or motivation.
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9.2 Impact

Beyond research findings and proof-of-concepts for visualisation-based explana-
tions, our research might have impacted the research community in the long
term and society in a broader sense as well:

• Our paper (Ooge et al., 2022b) corresponding to Chapter 4 was recognised
by the journal publisher as one of the most downloaded papers in the 12
months following online publication. This sparks hope that in the near
future visual analytics will be researched more widely as a technique to
explain advanced algorithms. In addition, we hope the visual analytics
approaches in our review either allow healthcare practitioners to determine
whether advanced algorithms can safely be adopted or foster further
interdisciplinary dialogue with XAI researchers.

• Our paper (Ooge and Verbert, 2022) corresponding to Chapter 5 was
marked by the publisher as a feature paper, meaning it “represents most
advanced research with significant potential for high impact in the field.”
We hope the aspiration encapsulated in this recognition becomes a reality
to help spread the adoption of human-centred approaches in agrifood for
designing visual decision-support systems. Our research namely suggests
that such approaches can lead to systems that better meet people’s needs
and foster appropriate trust, which ultimately contributes to increased
uptake.

• Multiple teachers and schools have expressed interest in further using the
e-learning platform we built upon in Chapters 6 to 8. Additionally, we
collaborated with industrial partners in educational technology such that
our research methods and outcomes can seep through into their current
products, which are being used on a large scale. Both events show we
helped pave the way towards an exciting new educational approach where
learning content is personalised in a controllable and transparent way.

In sum, through our research, we have promoted XAI, visualisation, and
human-centred practices in healthcare, agrifood, and education. We feel this
will contribute to closer interdisciplinary research efforts and solutions for
explainability that align with people’s needs.
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9.3 Critical Reflections and Future Directions

This section critically discusses several overall challenges for XAI, links them
to some of the limitations in our research as indicated in the corresponding
sections in Chapters 4 to 8, and proposes future research directions that could
tackle them.

Definitions and Measurement Instruments

“Define your terms [...] or we shall never understand one another,” wrote the
philosopher Voltaire in the eighteenth century (Voltaire, 1977). What was true
then, still holds today, especially in scientific research. However, XAI seems to
be struggling with definitions on both a conceptual and a fundamental level.

On a conceptual level, XAI researchers have not yet agreed upon definitions
for many of the human-centred concepts they study, for example, model
understanding or trust in AI systems. Also in our work, we have not built
upon frameworks from the learning sciences to clearly define self-reflection and
metacognition. This is problematic in the long run as it hampers comparing
results and building on previous findings. We discuss the case of trust in more
detail. Many papers claim to study trust, but upon closer inspection of their
measurement instruments, they actually equate trust with confidence (Dasgupta
et al., 2017), actual and perceived model accuracy (Chuang et al., 2012; Mohseni
et al., 2020; Nourani et al., 2019), satisfaction (Gedikli et al., 2014), perceived
transparency (Gedikli et al., 2014), or acceptance and rejection of model
outcomes (Papenmeier et al., 2019; Yin et al., 2019; Zhang et al., 2020). The
lack of widely-accepted definitions also results in a plethora of measurement
instruments to assess XAI-related concepts. For example, some studies measure
trust with a single Likert-type question (Bussone et al., 2015; Dasgupta et al.,
2017; Holliday et al., 2016; Krause et al., 2018b; Millecamp et al., 2019; Nourani
et al., 2020), implicitly assuming that trust is a monolithic concept. Other
studies measure trust with multiple Likert-type questions, either ad hoc because
the questions correlate or refer to a general definition for trust (Kizilcec, 2016;
Uggirala et al., 2004; Yang et al., 2020a), or based on underlying theory of trust
as a multidimensional concept constituted by constructs such as competence,
benevolence, and integrity (Bayer et al., 2022; Cramer et al., 2008; Dikmen and
Burns, 2022). In the latter case, however, there is again “little agreement
on the specific constructs that constitute trust” (McKnight et al., 2002).
Yet, since we feel multidimensional measurements are the most precise and
insightful, we adopted this approach in our work in Chapters 5 to 8. While
our operationalisation of trust seems a step in the right direction, it does not
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directly account for the core concept of vulnerability (Vereschak et al., 2021),
implying that our results might not transfer to application contexts with higher
stakes.

On a fundamental level, XAI lacks widely-accepted definitions for concepts at
its core, including transparency and explanations (Doshi-Velez and Kim, 2017;
Lipton, 2018). In addition, remember from Section 2.3 that XAI researchers
often use terms such as ‘explainability’, ‘interpretability’, ‘transparency’,
‘understandability’, ‘intelligibility’, ‘explicability’, and ‘comprehensibility’
interchangeably (Adadi and Berrada, 2018; Barredo Arrieta et al., 2020).
Possibly more concerning is that it might be misleading to say XAI methods
are “explaining” AI models (Rudin, 2019): the algorithmic XAI approaches
in Section 2.4 are not faithful to the models they “explain” and may thus
inaccurately represent them. In other words, “explanations” do not truly
describe how AI models works. If we are to make decisions based on real-world
data with AI models that already approximate the real world, we should question
whether it is always appropriate to add a second layer of approximation with
simplifying “explanations.” Put more poetically: do we want a black box on
top of a black box, and if so, when and what for?

The next subsections will elaborate on this question from different perspectives,
but before proceeding, I wish to soften the critical reflections in this section a bit.
In the end, it is very challenging to define human-centred aspects unambiguously,
especially in an interdisciplinary field. Ending on a positive note, we are hopeful
that the current Babel-like confusion of tongues will fade as XAI matures as
a research field. Researchers have already been working towards more unified
definitions and corresponding measurement instruments (Donoso-Guzmán et al.,
2023; Gulati et al., 2017, 2019; Hoff and Bashir, 2015; Hoffman et al., 2019;
Jacovi et al., 2021; Jian et al., 2000; Madsen and Gregor, 2000; Vereschak et al.,
2021), and we foresee they will continue to do so in the future.

Goals for XAI Beyond Model Understanding and Trust

Much of the research presented in this thesis involved trust perceptions. However,
our findings support researchers who argue that fostering (appropriate) trust
should not be the only goal of XAI and there should be more focus on
utility (Davis et al., 2020). This means the sum of humans and AI explanations
should be bigger than the human or AI on their own: explanations should
be designed such that they improve model debugging and validation, model
selection, mental model and model understanding, executing tasks together with
AI, and model steering (Davis et al., 2020). To expand upon this list, I propose
XAI researchers should also study wider concepts such as metacognition and
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motivation, which are very relevant goals for learners in education and patients
who need to alter their lifestyle, for example.

In our work, we made first steps to study how visual explanations affect
metacognition, motivation, learning performance, and enjoyment. While
qualitative data in Chapters 7 and 8 showed hopeful signs for how XAI can
stimulate learners’ metacognition and motivation, we could not confirm this with
quantitative data in a short-term randomised controlled experiment in Chapter 8
for the case of what-if explanations. Yet, much like trust evolves (Holliday et al.,
2016; Nourani et al., 2020; Ooge and Verbert, 2021), motivation can rise and fall
within individuals over time (Ryan, 2012). Future work should therefore study
motivation trajectories in long-term experiments and investigate the relation
with explanations and control mechanisms more carefully. To this end, ongoing
collaborations with researchers from Carnegie Mellon University study more
closely how what-if explanations affect motivation, metacognition, and mastery
orientation under different learner control levels. The core idea regarding what-if
explanations is to not only show potential improvement in learning in the best
case, but also potential decline in the worst case, and the expected change based
on learning analytics of similar learners. The rationale behind this set-up is
to start exploring the trade-off between stimulating motivation while staying
realistic: for example, what-if explanations that show large progress could be
perceived as most motivating at first glance, but become demotivating once
it becomes clear they set impossible goals. Overall, our initial studies argue
for XAI beyond model understanding and trust, similar to recent research by
Conijn et al. (2023).

Explanations Have Issues Too: Foster Cognitive Engagement

XAI is typically promoted as a technique to mitigate biases, and improve model
understanding and trust. Even though these goals indeed seem reasonable,
they obscure an important pitfall robustly found in recent work: explanations
can lead to unwarranted trust or distrust in AI models (Liao and Varshney,
2022). For example, explanations can positively affect trust but also lead to
over-reliance (Bussone et al., 2015) and reinforce cognitive biases (Bertrand
et al., 2022); and AI novices can prefer explanation representations with which
they perform worse (Szymanski et al., 2021). Thus, inadequate explanations
can have adverse effects when people believe they understand AI systems even
though they do not (Weber et al., 2021). This is related to what is called the
“illusion of explanatory depth” (Rozenblit and Keil, 2002): people generally
tend to overestimate how well they understand complex phenomena.

Fortunately, researchers are starting to address this problem by studying trust
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calibration, i.e., the ways how people distinguish when to trust or distrust AI
systems (Han and Schulz, 2020; Zhang et al., 2020). It seems errors in trust
calibration occur when people do not understand how systems work, do not
know their capabilities, are overwhelmed, lack situation awareness, or feel a loss
of control (Naiseh et al., 2021). In such situations, people are not cognitively
engaging with explanations to build correct mental models and calibrate their
trust. This aligns with a more general tendency: people are often reluctant to
engage in what they perceive as effortful (Kool and Botvinick, 2018), resulting
in less-informed trust decisions (Naiseh et al., 2021). Admittedly, our work in
Chapters 6 to 8 also did not consider whether adolescents really cognitively
engaged with our visual explanations. Specifically, we did not use eye-tracking
to validate that adolescents indeed analysed them, and we did not measure
their understanding of the recommender system through answering questions
about the recommendation model. In our defence, determining whether trust in
recommender systems is warranted seems challenging without a ground truth
for ‘good’ recommendations.

Overall, this discussion motivates why we as XAI researchers should be more
careful with how we frame the benefits of XAI. Too often, papers mention
slogans similar to “we need explanations to increase trust and enable humans
to understand and appropriately trust AI.” Yet, there is a difference between
what we ideally hope to achieve and what experiments with real people find.
To avoid biases, explanations should be cognitively engaging and to realise that,
the way forward is making explanations interactive and combining them with
control mechanisms, similar to the approach in Chapter 8. The next subsection
elaborates on a more general framework that supports this belief.

Recommendation-Driven vs Hypothesis-Driven Explaining

Current explanations are typically static (Abdul et al., 2018) and one-off,
not considering user input or preferences beyond initial configurations (Sokol
and Flach, 2020). Yet, this mismatches with how people justify things in
conversations: this typically happens iteratively, with participants frequently
asking questions similar to “do you understand?” (Hind, 2019). While
Miller (2019) has already pointed out this interactive, dialogue-like nature
of explanations several years ago, XAI techniques seem to lag behind. This
leads to situations where AI complemented with explanations seems like a one-
way road where AI models try to persuade people to adopt its outcomes. Miller
(2023) calls this the recommendation-driven paradigm and Van Cauwenberge
et al. (2022) captured this paradigm beautifully as: many roads lead to Rome,
but AI only shows one road.
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Recently, Miller (2023) has argued that the recommendation-driven way
of implementing XAI is “dead.” Instead, he pushed the idea of dialogue-
like explanations and control over decision-making further by arguing that
XAI should move to a hypothesis-driven paradigm for decision support.
Concretely, Miller proposed that XAI should no longer focus on justifying
AI recommendations in the way we also pursued in Chapter 6. Instead, the
focus should lie on generating and presenting evidence that supports or refutes
human judgements, explaining trade-offs between different options. This puts
the control over which hypotheses are investigated back into the hands of
human decision-makers, essentially turning around the idea of trying to bring
“humans in the loop” into “machines in the loop” (Green and Chen, 2019)
during decision-making. Overall, this aligns with the challenge on interactive,
cognitively engaging explanations, discussed in the previous subsection. Thus,
it seems vital to study why, when, and for whom it is desirable to design
explainable AI systems according to a hypothesis-driven paradigm.

The question remains how the idea of a hypothesis-driven paradigm can be
translated into practice. Research has started to work in this direction by trying
to nudge people to engage deeper in System 2 thinking (Liao and Varshney,
2022), i.e., slower and analytical thinking (Kahneman, 2011). For example,
Buçinca et al. (2021) used different strategies to force people into engaging
more thoughtfully with explanations and found this reduced overreliance on
an AI model. Our work in Chapter 8 has also contributed to this line of
research by interactively combining learner control with explanations. Future
research could push our idea further by not providing a default value on the
control slider and forcing learners to actively consider which difficulty level
suits them. From an interaction point of view, conversational techniques could
be promising to actively engage people with explanations through natural
language dialogues (Lakkaraju et al., 2022). Combining this with visualisations
could combine the best of both worlds, which is why future collaborations with
researchers from Hong Kong Baptist University will study how visualisation-
supported chatbots impact people’s decision-making.

9.4 Taking a Final Step Back

This thesis showed how XAI plays a pivotal role within the broader AI ecosystem,
offering people insights into the decision-making process of complex AI models.
However, we should reflect upon how the XAI techniques we design and evaluate
can be integrated into real applications. For example, it seems plausible that
major tech companies will not voluntarily embrace transparency solutions that
could reveal potential biases in their products as it may jeopardise their revenues.
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Furthermore, another challenge is ensuring that the general public gains more
awareness of AI’s potential pitfalls: automation bias seems deeply rooted and
it is unclear whether explanations alone can counter this. In this respect,
education plays a vital role in nurturing people’s realistic expectations of AI.

Zooming out more, explanations and control mechanisms alone seem insufficient
to solve the entirety of AI’s ethical and practical challenges. Therefore,
the ultimate goal is not providing perfect explanations, but ensuring what
is nowadays called reliable, safe, and trustworthy AI (Shneiderman, 2020).
This acknowledges that besides explainability, there is a need for robustness,
safety, fairness, accountability, privacy, and data governance (Hamon et al.,
2022). It is in this broader interdisciplinary framework that we should critically
study trade-offs between different goals. For example, there is a trade-off
between transparency and security as explanations are potentially susceptible
to extraction attacks that expose privacy (Yan et al., 2022), and transparency
and accountability might conflict (Ananny and Crawford, 2018; Lima et al.,
2022).

Overall, it seems the rapid pace with which AI evolves brought us to a point
where whole societies are reflecting more about aspects we probably should
have thought about for much longer. Which metrics should we use to assess
technology? Should we launch AI on massive scales without properly testing
it or thoroughly considering its societal impacts? Is it acceptable to tolerate
huge power imbalances regarding massive data collection and deployment of
incredibly complex AI models? Is it worth deploying AI systems that consume
enormous amounts of energy and thus contribute to ruining the world-wide
climate? Is automation even the answer to all problems? While XAI is but one
piece of the complex AI puzzle and certainly has its own set of limitations, I
find it truly inspiring to witness and contribute to the interdisciplinary efforts
towards augmenting human capabilities with AI. Especially XAI in the sense of
a hypothesis-driven paradigm seems to have a bright future.



Acknowledgements

The past four years have undoubtedly been the most exciting years of my
life. Pursuing a PhD offered me the privilege to live my passion for research
and education, travel around the globe, and learn from hundreds of talented
people. I have experienced periods of extreme joy and fulfilment and have grown
as a writer, speaker, mentor, teacher, programmer, ambassador, and analyst.
But the past four years have also been turbulent ones. The PhD constantly
challenged me to improve my work and myself without slipping into self-doubt,
exhaustion, or stagnation. I want to wholeheartedly thank everyone who raised
my enthusiasm and energy levels, shared moments of sheer happiness, and
helped me balance perfectionism and acceptance.

Thank you to my family. My dear parents, grandparents, and sister Joke. Your
decade-long support and sacrifices allow me to follow my heart. Without the
safe and stimulating environment you create, I wouldn’t be as brave and free of
serious sorrows, and an academic career would never have been an option. I
know you often need to miss me because of my career choices, but I will always
be there if you need me. Yens, five years ago, I asked you whether you were
ready for me, and I couldn’t believe you answered “yes.” But time and again,
you proved that you were: when you cycled me to the hospital after the broccoli
debacle, when you survived months of lockdown in a one-person studio with me,
when you held me in moments of anxiety and mental breakdown. You bring
out the best in me, and I hope I can support your personal growth and PhD
journey as well as you have mine.

Thank you to everyone on my examination committee. Katrien, I am grateful
that you were my promotor. From the start, you provided a safe financial
environment, plenty of research opportunities, and the space to work how and
when I felt most comfortable. I am especially thankful that you didn’t prey upon
my perfectionism and work ethos and were generously sharing your academic
network and experience. Tinne and Vero, thank you for following my PhD
trajectory all the way and acting as constructively critical yet encouraging

259



260 RESEARCH CONTRIBUTIONS AND FUTURE DIRECTIONS

sounding boards. Denis and Tias, thank you for providing an algorithmic
counterweight to the human-centred armada.

Thank you to my direct colleagues in the Augment lab: Robin for your hands-on
advice and positive feedback, Houda for enlightening my days with your laughter,
Ivania for bringing enthusiasm and fun into the office, Aditya for ensuring a
continuous stream of Darjeeling tea, Maxwell for your positivism and casual
after-work meetups. Nyi-Nyi, Martijn, Francisco, Tom, Diego, Arno, Leen,
Raphael: I missed your presence in the lab after your leave and still cherish all
our moments together. Also, thanks to my many other friends at KU Leuven:
Mingxiao, sharing our office has been a pleasure, and I am grateful for all the
lovely talks we had; Jihae, Robbe, Song, Taiyu, Adal, you made me feel at
home in a second lab and our adventures abroad and lunch/tea breaks fed my
moral; Shirin your warmth and passion for research made me feel understood;
Thomas, your drive inspired me; Lucy, you were a fantastic Easter bunny and
chess master; Alex, you are even more fun than your musical wall.

During my travels abroad and conferences, I met so many wonderful people
and shared so many beautiful moments with them that it would take dozens of
pages to name everyone who left an impression on me. Therefore, a shoutout
to the friends with whom I spent the most time: Viva, you’re a rockstar, and
I wish the CHI conferences weren’t the only opportunity for us to hang out
together in person so I could enjoy more of your humour and wisdom; Clara,
what you did for me in Sydney moved me, and I loved our trip in your hometown
Paris. Special thanks to everyone who surrounded and supported me during
my unforgettable stays in Maribor, Hong Kong and Pittsburgh: Gregor Stiglic,
Lucija Gosak, Primoz Kocbek, Li Chen, Yucheng Jin, Xianglin Zhao, Weixin
Chen, Jingwen Xu, Xinglin Pan, Vincent Aleven, Conrad Borchers, Kexin Yang,
Meng Xia, Ken Holstein, John Stamper, Adam Perer, Youli Chang, Katelyn
Morrisson, Peter Brusilovsky, and Kamil Akhuseyinoglu. Jeremiah and Ethan,
thanks for the dynamic hackathon adventure. Jordan, my stay in Pittsburgh
wouldn’t have been the same without you, and I owe you so much for all your
generosity and friendship. Deniz and Mesut Erhan, your house was my safe
haven and without it, my thesis wouldn’t have been of the quality I pursued.

I thank all students who participated in my classes and renewed my energy with
their enthusiasm. Sho, Kenan, Mario, Jeffrey, Barbara, Leen, Anissa, Joran: it
was a pleasure guiding your master theses and I’m so grateful for all the things
you taught me. I also thank the hundreds of study participants whose time and
feedback form the base of my research achievements, and the often-forgotten
people who work behind the scenes to manage the Department of Computer
Science at KU Leuven. Special thanks to Karin Michiels for processing my
dozens of receipts for reimbursement and arranging flights and hotels. Finally,
I thank you, dear reader. I hope my work and experiences inspire you.



Appendix A

Questionnaires and Details

A.1 Pre- and Post-Study Questionnaires

Table A.1: The questionnaire that participants answered at the end of the
study in Chapter 6. All questions were evaluated on a 7-point range. The group
names in italics are for reference; participants did not see them. After each
group, participants could motivate their answers and give additional comments
in a text field.

No. English original Dutch translation

Competence
Q1 Wiski is like an expert (for example, a

teacher) for recommending math exercises.
Wiski is zoals een expert (bv. een leer-
kracht) in wiskunde-oefeningen aanraden.

Q2 Wiski has the expertise (knowledge) to
estimate my math level.

Wiski heeft de expertise (kennis) om mijn
wiskundeniveau te kunnen inschatten.

Q3 Wiski can estimate my math level. Wiski kan mijn wiskundeniveau inschatten.
Q4 Wiski understands the difficulty level of

math exercises well.
Wiski begrijpt de moeilijkheidsgraad van
wiskunde-oefeningen goed.

Q5 Wiski takes my math level into account
when recommending exercises.

Wiski houdt rekening met mijn wiskunde-
niveau om oefeningen aan te raden.

Benevolence
Q6 Wiski prioritizes that I improve in math. Wiski zet op de eerste plaats dat ik

vorderingen maak in wiskunde.
Q7 Wiski recommends exercises so that I

improve in math.
Wanneer Wiski oefeningen aanraadt, doet
Wiski dat zodat ik vorderingen maak in
wiskunde.

Continued on next page
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Table A.1 – Continued from previous page

No. English original Dutch translation

Q8 Wiski wants to estimate my math level well. Wiski wil mijn wiskundeniveau goed
inschatten.

Integrity
Q9 Wiski recommends exercises as correctly as

possible.
Wiski raadt oefeningen op een zo correct
mogelijke manier aan.

Q10 Wiski is honest. Wiski is eerlijk.
Q11 Wiski makes integrous recommendations. Wiski maakt oprechte aanbevelingen.

Trust (one-dimensional)
Q12 I trust Wiski to recommend me math

exercises.
Ik vertrouw Wiski om mij wiskunde-
oefeningen aan te raden.

Intention to return
Q13 If I want to solve math exercises again, I

will choose Wiski.
Als ik nog eens online wiskunde-oefeningen
maak, dan kies ik voor Wiski.

Q14 If I want to be recommended math exercises
again, I will choose Wiski.

Als ik nog eens wiskunde-oefeningen
aangeraden wil krijgen, dan kies ik voor
Wiski.

Perceived transparency
Q15 I find that Wiski gives enough explanation

as to why an exercise has been recommen-
ded.

Ik vind dat Wiski genoeg uitleg geeft over
waarom een oefening aangeraden is.

General questions
Q16 I do NOT want any explanations about why

an exercise has been recommended when I
use Wiski.

Wanneer ik Wiski gebruik, wil ik GEEN
uitleg over waarom een oefening wordt
aangeraden.

Q17 I find an explanation for why an exercise
is recommended more important than for
why a movie is recommended.

Ik vind uitleg krijgen over waarom een
oefening wordt aangeraden belangrijker dan
waarom een film wordt aangeraden.

Q18 I am NOT happy with the level of math
exercises Wiski recommended.

Ik ben NIET blij met het niveau van de
oefeningen die Wiski aanraadde.

Q19 I find it important to receive explana-
tions when something (exercise/movie/pro-
duct/...) has been recommended.

In het algemeen vind ik het belangrijk om
uitleg te krijgen wanneer iets (oefening/-
film/product/...) wordt aangeraden.

Table A.2: The questionnaire that participants filled out at the end of the
study in Chapter 7. All questions were evaluated on a 7-point range, and
questions Q19, Q20, and Q25 were reverse-scored. The italic group names are
for reference; participants did not see them.

No. English version Dutch version

Competence
Q1 Wiski is like an expert (for example, a

teacher) for recommending maths exercises.
Wiski is zoals een expert (bv. een leer-
kracht) in wiskunde-oefeningen aanraden.

Continued on next page
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No. English version Dutch version

Q2 Wiski has the expertise (knowledge) to
estimate my maths level.

Wiski heeft de expertise (kennis) om mijn
wiskundeniveau te kunnen inschatten.

Q3 Wiski can estimate my maths level. Wiski kan mijn wiskundeniveau inschatten.
Q4 Wiski understands the difficulty level of

maths exercises well.
Wiski begrijpt de moeilijkheidsgraad van
wiskunde-oefeningen goed.

Q5 Wiski takes my maths level into account
when recommending exercises.

Wiski houdt rekening met mijn wiskunde-
niveau om oefeningen aan te raden.

Benevolence
Q6 Wiski prioritises that I improve in maths. Wiski zet op de eerste plaats dat ik

vorderingen maak in wiskunde.
Q7 Wiski recommends exercises so that I

improve in maths.
Wanneer Wiski oefeningen aanraadt, doet
Wiski dat zodat ik vorderingen maak in
wiskunde.

Q8 Wiski wants to estimate my maths level
well.

Wiski wil mijn wiskundeniveau goed
inschatten.

Integrity
Q9 Wiski recommends exercises as correctly as

possible.
Wiski raadt oefeningen op een zo correct
mogelijke manier aan.

Q10 Wiski is honest. Wiski is eerlijk.
Q11 Wiski makes integrous recommendations. Wiski maakt oprechte aanbevelingen.

Trust (one-dimensional)
Q12 I trust Wiski to recommend me maths

exercises.
Ik vertrouw Wiski om mij wiskunde-
oefeningen aan te raden.

Intention to return
Q13 If I want to solve maths exercises again, I

will choose Wiski.
Als ik nog eens online wiskunde-oefeningen
maak, dan kies ik voor Wiski.

Q14 If I want to be recommended maths
exercises again, I will choose Wiski.

Als ik nog eens wiskunde-oefeningen
aangeraden wil krijgen, dan kies ik voor
Wiski.

Transparency
Q15 I understood why the exercises were

recommended to me.
Ik begreep waarom de oefeningen aan mij
werden aanbevolen.

Q16 Wiski helps me understand why the
exercises were recommended to me.

Wiski helpt mij te begrijpen waarom de
oefeningen aan mij werden aanbevolen.

Q17 Wiski explains why the exercises are
recommended to me.

Wiski legt uit waarom de oefeningen aan
mij worden aanbevolen.

Control
Q18 I feel in control of telling Wiski what I want. Ik heb het gevoel dat ik Wiski kan vertellen

wat ik wil.
Q19 I don’t feel in control of telling Wiski what

I want.
Ik heb niet het gevoel dat ik Wiski kan
vertellen wat ik wil.

Q20 I don’t feel in control of specifying and
changing my preferences.

Ik heb niet het gevoel dat ik controle heb
over het omschrijven en veranderen van
mijn voorkeuren.

Continued on next page
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No. English version Dutch version

Q21 Wiski seems to control my decision process
rather than me.

Wiski lijkt mijn keuzeproces te controleren
in plaats van ikzelf.

Preference elicitation
Q22 Wiski provides an adequate way for me to

express my preferences.
Wiski laat me op een geschikte manier mijn
voorkeuren aangeven.

Q23 I found it easy to tell Wiski about my
preferences.

Ik vond het gemakkelijk om Wiski over mijn
voorkeuren te vertellen.

Q24 It is easy to learn to tell Wiski what I like. Het is gemakkelijk om te leren hoe ik Wiski
kan vertellen wat ik leuk vind.

Q25 It required too much effort to tell Wiski
what I like.

Het kostte te veel moeite om Wiski te
vertellen wat ik leuk vind.

Preference revision
Q26 Wiski provides an adequate way for me to

revise my preferences.
Wiski laat me op een geschikte manier mijn
voorkeuren aanpassen.

Q27 I found it easy to make Wiski recommend
different things to me.

Ik vond het gemakkelijk om Wiski mij
verschillende dingen te laten aanbevelen.

Q28 It is easy to train Wiski to update my
preferences.

Het is gemakkelijk om Wiski te leren mijn
voorkeuren aan te passen.

Q29 I found it easy to alter the recommended
exercises due to my preference changes.

Ik vond het gemakkelijk om de aanbevolen
oefeningen te wijzigen met mijn voorkeurs-
veranderingen.

Q30 It is easy for me to inform Wiski if I
dislike/like recommended exercises.

Het is voor mij gemakkelijk om Wiski te
laten weten of ik de aanbevolen oefeningen
leuk/niet leuk vind.

Q31 It is easy for me to get a new set of
recommended exercises.

Het is voor mij gemakkelijk om een nieuwe
reeks aanbevolen oefeningen te krijgen.

Table A.3: The pre- and post-study questionnaires that participants filled
out at the end of the study in Chapter 8. All questions were evaluated on a
7-point range, except for ENDUR1–ENDUR5, for which a 5-point range was
used. Questions ENDUR3 and MOTIV4 were reverse-scored. The italic group
names are for reference; participants did not see them.

No. Question Load. Com.

Intrinsic motivation (ω = 0.65, CI = [0.51, 0.73])
SMS1 Because it gives me pleasure to learn 0.65 0.40
SMS2 Because it is very interesting to learn how I can improve 0.66 0.43
SMS3 Because I find it enjoyable to discover new things 0.66 0.42
SMS4 Because learning reflects the essence of whom I am 0.60 0.39
SMS6 Because learning is an integral part of my life 0.72 0.47
SMS7 Because it is one of the best ways I have chosen to develop other

aspects of myself
0.66 0.43

SMS8 Because I have chosen learning as a way to develop myself 0.77 0.56

Continued on next page
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No. Question Load. Com.

SMS9 Because I found it is a good way to develop aspects of myself that
I value

0.57 0.43

SMS11 Because I feel better about myself when I learn 0.67 0.50
SMS5 Because through learning, I am living in line with my deepest

principles
SMS10 Because I would feel bad about myself if I did not take the time

to learn
SMS12 Because I would not feel worthwhile if I did not learn

Extrinsic motivation (ω = 0.87, CI = [0.84, 0.90])
SMS13 Because people I care about would be upset with me if I did not

learn
0.57 0.37

SMS14 Because people around me reward me when I learn 0.48 0.23
SMS15 Because I think others would disapprove of me if I did not learn 0.82 0.61
SMS16 I used to have good reasons to learn, but now I am asking myself

if I should continue
SMS17 I don’t know anymore; I have the impression that I am incapable

of succeeding in learning
SMS18 It is not clear to me anymore; I don’t really think my place is in

learning

Trust (one-dimensional)
1DT I trust Wiski to recommend me maths exercises.

Competence (ω = 0.81, CI = [0.73, 0.87])
COMP2 Wiski has the knowledge to estimate my maths level 0.52 0.48
COMP3 Wiski takes my maths level into account when recommending

exercises
0.74 0.76

BEN2 Wiski wants to estimate my maths level as well as possible 0.79 0.54
COMP1 Wiski is as good as a teacher in recommending exercises
BEN1 Wiski prioritises that I improve in maths

Intention to return (ω = 0.84, CI = [0.75, 0.90])
ITR1 If I practice maths exercises online again and I want recommended

exercises, I will choose Wiski
0.88 0.83

ITR2 I would use Wiski again in the future 0.79 0.64

Metacognition (ω = 0.87, CI = [0.80, 0.91])
MCOGN1 This screen made me reflect upon my maths level 0.73 0.53
MCOGN2 This screen made me reflect upon whether I made progress 0.75 0.56
MCOGN3 This screen made me reflect upon how Wiski recommends exercises 0.73 0.54
MCOGN4 This screen made me reflect upon whether Wiski recommends

suitable exercises
0.73 0.54

MCOGN5 This screen made me reflect upon whether I reach my learning
goals

0.81 0.66

Endurability (ω = 0.78, CI = [0.65, 0.85])
ENDUR2 I consider my experience with Wiski was a success 0.89 0.79
ENDUR4 My experience with Wiski was rewarding 0.69 0.48
ENDUR5 I would recommend practising on Wiski to my friends 0.64 0.41
ENDUR1 Practising on Wiski was worthwile

Continued on next page
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No. Question Load. Com.

ENDUR3 My experience with Wiski did not work out the way I had planned

Motivation (ω = 0.86, CI = [0.80, 0.90])
MOTIV1 Wiski motivated me to make more exercises than usual 0.88 0.78
MOTIV2 Because of Wiski I want to understand maths more 0.70 0.49
MOTIV3 I find practising with Wiski more fun than making exercises from

a text book
0.79 0.63

MOTIV5 Wiski stimulated me to put more effort into maths 0.73 0.53
MOTIV4 I did not find Wiski motivating

A.2 Elo Rating System

Our implementation of the Elo rating system in Chapter 8 was heavily inspired
by the variant typical for chess ratings. The Beginner–Expert levels were
inspired by the Dreyfus model (Dreyfus, 2004) and their range corresponded to
the interval [1000, 2000], which roughly corresponds to typical Elo scores for
novice (1000) and expert (2000) chess players.

As explained in Section 7.2.4, Elo ratings are updated each time a learner l
answers an exercise e:

Elo(l) = Elo(l) + klearner (Xle − P (Xle = 1)),

and Elo(e) = Elo(e) − kexercise (Xle − P (Xle = 1)).

While klearner = kexercise in Chapters 6 and 7, our implementation now used
different values, depending on how many exercises l had solved and l’s Elo
rating:

i f ( number_solved < 20 & e lo_ l ea rne r < 2000) {
k_learner = 40 ;

} else i f ( e l o_ l ea rne r < 2000) {
k_learner = 20 ;

} else {
k_learner = 10 ;

}

i f ( number_solved <10) {
k_exerc i se = 40 ;

} else i f ( number_solved <20) {
k_exerc i se = 20 ;

} else {
k_exerc i se = 10 ;
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}

While these parameters can be optimised (Wauters et al., 2010), we inspired
our adaptation scheme on values proposed by the international chess federation
FIDE. Further improving upon Chapters 6 and 7, we computed the probability
P (Xle = 1) considering that exercises have a multiple-choice format (Pelánek,
2016):

P (Xle = 1) = 1
k

+
(
1 − 1

k

) 1
1 + 10−(Elo(l)−Elo(e))/400 , (A.1)

where k is the number of options in exercise e.

A.3 Wise Feedback

Table A.4: Variants of the wise feedback on our platform in Chapter 8 for
different intervals of difficulty levels. Each variant conveys high standards for
the learners’ performance, but also includes a belief in their potential to reach
that standard (Yeager et al., 2017).

Difficulty Wise Feedback

[0.0, 0.2] I think you can handle exercises that are much harder. I expect a lot from you
and am sure you can do it!
This level is very low for you. I expect you can solve a more difficult series. I
believe in you!
These are very easy exercises. You can surely make them, but I believe you can
handle a harder level. Then you’ll grow faster!

[0.2, 0.4] I believe you can handle exercises that are more difficult. I believe you can grow
even further!
I think you can handle more difficult exercises. That way you will grow faster!
You can definitely solve easier exercises, but I believe you can handle slightly
more difficult exercises. You can do it!

[0.4, 0.6] I think you can handle this difficulty for sure. Maybe you could choose a slightly
higher difficulty to get even better!
This is a level I believe you can handle. Maybe you can choose a slightly harder
level to grow faster.
I believe you can solve these exercises, but maybe you could set the difficulty
slightly higher. That way you’ll get even better!

[0.6, 0.8] This difficulty is challenging, but the bar is high and I trust in your abilities!
This is a slightly more challenging level, but I definitely believe you can solve
these exercises correctly!
I trust that you can solve these difficult exercises. That way, you will also grow
faster.

[0.8, 1.0] This difficulty seems very challenging for you. If you think you can handle it, I
totally support you!
Wow, a challenge! You can always try, I believe in you!

Continued on next page
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Difficulty Wise Feedback

This is a very difficult level. But if you think you can handle the exercises, I
totally believe in you!

A.4 Learning Performance Correction

In Chapter 8, we did not measure participants’ learning performance solely in
terms of correct and wrong answers because this does not consider the exercises’
difficulty. For example, suppose learner A and B both solved three exercises
correctly, where A’s exercises were easy and B’s were hard (difficulty is estimated
by the exercises’ Elo ratings). We opted to assess B’s performance as higher
and thus needed to think of a correction strategy.

We initially planned to average participants’ Elo ratings for the topics they
practised, but that strategy was suboptimal as participants had not practised
long enough for their Elo ratings to converge. Moreover, Elo ratings only have
relative meaning, so a rating of, say, 1000 does not have a pedagogy-based
“easy” or “hard” interpretation. Correcting based on topic difficulties did not
work either: topics proved to have exercises of varying difficulty, which made
averaging per topic rather useless as all topics got similar average difficulties
(see Figure A.1). Therefore, our performance score for each learner is the
average of their performance on all the exercises they solved, corrected by
those exercises’ difficulty. The correction is based on the cumulative density
function (cdf) of exercises’ difficulty as measured by their Elo ratings and is
depicted in Figure A.2. Specifically, a pair (z, p) of a difficulty z ∈ [1000, 2000]
and performance p ∈ {0, 1} is transformed as follows:

T (z, p) =
(
z, (1 − β) p + α cdf(z)

)
,

where α and β are freely chosen parameters. We chose α = β = 1/4 because
those values seemed reasonable, but future work can assign different values and
even choose α ̸= β. Under our transformation, a wrong answer for the hardest
exercise would yield a performance of 1/4 instead of 0, and a correct answer for
the easiest exercise 3/4 instead of 1. Finally, a learner’s corrected performance



LEARNING PERFORMANCE CORRECTION 269

Figure A.1: Elo rating evolutions of exercises in the five most practised maths
topics. There is a wide variety in exercises’ difficulty.

would then become:

corrected performance = 1
n

n∑
k=1

(
(1 − β) pk + α cdf(zk)

)

= (1 − β) p̄ + α

n

n∑
k=1

cdf(zk),

where p̄ is the average performance over all exercises e1, . . . , en solved by that
learner, with respective difficulties z1, . . . , zn and performances p1, . . . , pn.

For the cdf, we only considered exercises that were solved at least 10 times and
for which the Elo ratings were rather converged, i.e., the last 10 ratings were
maximally 200 apart. As a consequence, we could not assess the performance for
9 participants who had only solved exercises that did not meet our restrictions.
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Figure A.2: The cumulative density function for the exercises’ Elo ratings in
our experiment in Chapter 8.
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